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Traditional Network Representation 

• How to represent a graph  



Traditional Network Representation 

• How to represent a graph  



Concepts 

• Representation learning  
– Using machine learning techniques to derive data 

representation  

 

• Distributed representation  
– Different from one-hot representation, it uses dense 

low-dimensional vectors to represent data points 

 

• Embedding 
– Mapping information entities into a low-dimensional 

space 



What is network embedding? 

• Map the nodes in a network into a low-
dimensional space 

– Distributed representation for nodes 

– Similarity between nodes indicate the link 
strength  

– Encode network information and generate node 
representation 
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Example 

• Zachary’s Karate Network: 
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Problems with Previous Models 

• Classical graph embedding algorithms 

– MDS, IsoMap, LLE, Laplacian Eigenmap 

– Most of them follow a matrix factorization or 
computation approach 

– Hard to scale up 

– Difficult to extend to new settings  



Outline 

• Preliminaries 
– word2vec 

• Basic Network Embedding Models 
– DeepWalk, Node2vec, LINE, GrapRep, SDNE 

• Advanced Network Embedding Models 
– Beyond embedding, vertex information, edge 

information 

• Applications of Network Embedding 
– Basic applications, visualization, text classification, 

recommendation  

• Conclusion 



Preliminaries 

• Softmax functions 

• Distributional semantics 

• Word2vec 

– CBOW 

– Skip-gram 

 

 



Sigmoid Function 

• A sigmoid function can map a real value to the 
interval (0, 1)  

 



Softmax function 

• It transforms a K-dimensional real vector into 
a probability distribution 

– A common transformation function to derive 
objective functions for classification or discrete 
variable modeling 



Distributional semantics 

• Target word = “stars” 



Distributional semantics 

• Collect the contextual words for “stars” 



Word2Vec 

• Input: a sequence of words from a vocabulary 
V 

 

• Output: a fixed-length vector for each term in 
the vocabulary 

– vw  

It implements the idea of distributional semantics using a shallow neural network model.  



Architecture 1: CBOW 

• CBOW predicts the current word using 
surrounding contexts 

– Pr(𝑤𝑡|context(𝑤𝑡)) 
 

• Window size 2c 

• context(𝑤𝑡) = [𝑤𝑡−𝑐, …, 𝑤𝑡+𝑐] 

 



Architecture 1: CBOW 

• CBOW predicts the current word using 
surrounding contexts 

– Pr(𝑤𝑡|context(𝑤𝑡)) 
 

– Using a K-dimensional vector to 
 represent words 

• 𝑤𝑡  → 𝒗𝑤𝑡
 

• 𝒗 𝑤𝑡
=

 𝒗𝑡+𝑐
𝑖=𝑡−𝑐 𝑤𝑖

2𝑐
         (𝑖 ≠ 𝑡) 



Architecture 1: CBOW 

• CBOW predicts the current word using 
surrounding contexts 

– Pr(𝑤𝑡|context(𝑤𝑡)) 
 

– Basic Idea 

• Given the context of the current  
word   𝒗 𝑤𝑡

 

• Sim(𝒗 𝑤𝑡
 , 𝒗𝑤𝑡

) > Sim(𝒗 𝑤𝑡
 , 𝒗𝑤𝑗

)  



Architecture 1: CBOW 

• How to formulate the idea 

– Using a softmax function 

– Considered as a classification problem 

• Each word is a classification label 

𝑃 𝑤 wcontext =
exp (𝑠𝑖𝑚(𝒗 𝑤 , 𝒗𝑤))

 exp (𝑠𝑖𝑚(𝒗 𝑤 , 𝒗𝑤′))𝑤′
 



Architecture 2 

• Skip-gram predicts surrounding words using 
the current word 

– Pr(context(𝑤𝑡) | 𝑤𝑡) 

• Window size 2c 

• context(𝑤𝑡) = [𝑤𝑡−𝑐, …, 𝑤𝑡+𝑐] 

 



Architecture 2 

• Skip-gram predicts surrounding words using 
the current word 

– Pr(context(𝑤𝑡) | 𝑤𝑡) 

• Window size 2c 

• context(𝑤𝑡) = [𝑤𝑡−𝑐, …, 𝑤𝑡+𝑐] 

 

𝑃(𝑤′|𝑤) =
exp (𝑠𝑖𝑚(𝒗𝑤 , 𝒗𝑤′))

 exp(𝑠𝑖𝑚(𝒗𝑤  , 𝒗𝑤′′))𝑤′′
 



Time Complexity for Direct 
Optimization 

𝑃 𝑤 wcontext =
exp (𝑠𝑖𝑚(𝒗 𝑤 , 𝒗𝑤))

 exp (𝑠𝑖𝑚(𝒗 𝑤 , 𝒗𝑤′))𝑤′
 𝑃(𝑤′|𝑤) =

exp (𝑠𝑖𝑚(𝒗𝑤 , 𝒗𝑤′))

 exp(𝑠𝑖𝑚(𝒗𝑤  , 𝒗𝑤′′))𝑤′′
 

CBOW Skip-Gram 

O(|V|) 



Optimization I: Hierarchical Softmax 

It can be verified that the sum of the probabilities for all the leaf nodes is equal to 1  

O(log2 |V|) 



Optimization II: Negative Sampling 

O(1+k) 



Network Embedding Models 

• Embedding  

– Neighborhood  

• DeepWalk 

• Node2vec 

– Proximity  

• LINE 

• GraRep 

• Deep+promixity 

– SDNE 



Network Embedding Models 

• DeepWalk (Perozzi et al., KDD 2014) 

• Node2vec 

• LINE  

• GraRep 

• SDNE 



DeepWalk 

• DeepWalk learns a latent representation of 
adjacency matrices using deep learning 
techniques developed for language modeling 
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Language modeling 

• Learning a representation of a word from 
documents (word co-occurrence): 

– word2vec: 

• The learned representations capture inherent 
structure 

• Example: 
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From language modeling to graphs 

• Idea: 
– Nodes <--> Words 
– Node sequences <--> Sentences 

• Generating node sequences: 
– Using random walks 

• short random walks = sentences 

 
 

• Connection: 
– Words frequency in a natural language corpus follows a 

power law. 
– Vertex frequency in random walks on scale free graphs 

also follows a power law. 
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Power-law distribution 



Scale-free network 

• A scale-free network is a network whose 
degree distribution follows a power law, at 
least asymptotically.  

 

 

• Power-law distributions are scale invariance 



Scale-free network 

• Which network is scale-free? 



Scale-free network 

• Random networks’ degree distribution follows 
a Poisson distribution, while scale-free 
network follows a power-law distribution   



Note 1 

• How to generate random paths based on a 
graph 

– Weighted graph 

– Unweighted graph 



Note 2 

• How to sample a discrete variable from a 
multinomial distribution 



Note 3 

• What is PageRank? 



The workflow of DeepWalk 
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Representation Mapping 
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Deep Learning Structure:  
Skip-gram model 

38 

Skip-gram: The input to the model is wi, 
and the output could be  
wi−1,wi−2,wi+1,wi+2 

v3 

Φ(v1) 

v1 



Experiments 

• Node Classification 

– Some nodes have labels, some don’t 

• DataSet 

– BlogCatalog 

– Flickr 

– YouTube 

39 



Results: BlogCatalog 

40 



Network Embedding Models 

• DeepWalk 

• Node2vec (Grover et al., KDD 2016) 

• GENE 

• LINE 

• SDNE 



Node2Vec 

• A generalized version of DeepWalk 

– Objective function 

 

 

– Conditional independence 

 

 

– Symmetry in feature space 



Node2Vec 

 

– A network neighborhood of node u generated 
through a neighborhood sampling strategy S. 

– The key lies in how to find a neighbor on the 
graph 

– How does DeepWalk solve this? 



How Node2vec Do this? 

• Motivation 

 

 

 

 

 

– BFS:  broader  homophily 

– DFS:  deeper   structural equivalence  

 

 



Homophily 

• What is Homophily? 

– Homophily (i.e., "love of the same") is the 
tendency of individuals to associate and bond 
with similar others, as in the proverb "birds of a 
feather flock together". 



Structural Holes 

• Structural holes 
– The theory of structural holes [4] suggests that individuals 

would benefit from filling the “holes” (called as structural 
hole spanners) between people or groups that are 
otherwise disconnected. 

 

– Just a representative kind of  
structural role 



How Node2vec Do this? 

• Can we combine the merits of DFS and BFS 

– BFS:  broader  homophily 

– DFS:  deeper   structural equivalence 



How Node2vec Do this? 

• Explaining the sampling strategy  



Node2vec Algorithm 



Alias Sampling 

• In computing, the alias method is a family of 
efficient algorithms for sampling from a 
discrete probability distribution 

• That is, it returns integer values 1 ≤ i ≤ n 
according to some arbitrary probability 
distribution pi.  

• The algorithms typically use O(n log n) or O(n) 
preprocessing time, after which random 
values can be drawn from the distribution in 
O(1) time. 

 



Comparison between DeepWalk and 
Node2vec 

• Actually have the same objective function and 
formulations  

 

• The difference lies in how to generate random 
walks 

 

• BEAUTY: node  word, path  sentence 



Network Embedding Models 

• DeepWalk 

• Node2vec 

• LINE (Tang et al., WWW 2015) 

• GraRep 

• SDNE 



First-order Proximity 

• The local pairwise proximity between 
the vertices 
– Determined by the observed links 

• However, many links between the 
vertices are missing 
– Not sufficient for preserving the entire 

network structure 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Vertex 6 and 7 have a large 
first-order proximity 

LINE 

From Jian Tang’s slides 



• The proximity between the 
neighborhood structures of the 
vertices 

• Mathematically, the second-order 
proximity between each pair of 
vertices (u,v) is determined by: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Vertex 5 and 6 have a large 
second-order proximity 

𝑝 𝑢 = (𝑤𝑢1, 𝑤𝑢2, … , 𝑤𝑢 𝑉 ) 

𝑝 𝑣 = (𝑤𝑣1, 𝑤𝑣2, … , 𝑤𝑣 𝑉 ) 

𝑝 5 = (1,1, 1,1,0,0,0,0,0,0) 

𝑝 6 = (1,1, 1,1,0,0,5,0,0,0) 

Second-order Proximity 

LINE 

From Jian Tang’s slides 



Questions 

• How to characterize the first-order and 
second-order proximity?  

– We assume each node is associated with a low-
dimensional latent factor 



Preserving the First-order Proximity 

• Given  an undirected edge 𝑣𝑖 , 𝑣𝑗 , the joint probability of  𝑣𝑖 , 𝑣𝑗 

 

 

 

 

 

 

𝑝1 𝑣𝑖 , 𝑣𝑗 =
1

1 + exp (−𝑢𝑖
𝑇 ⋅ 𝑢𝑗)

 

𝑂1 = 𝑑(𝑝 1 ⋅,⋅ , 𝑝1 ⋅,⋅ )  

∝ −  𝑤𝑖𝑗 log 𝑝1(𝑣𝑖 , 𝑣𝑗)

𝑖,𝑗 ∈𝐸

 

𝑝 1 𝑣𝑖 , 𝑣𝑗 =
𝑤𝑖𝑗

 𝑤𝑖′𝑗′(𝑖′,𝑗′)

 

𝑢𝑖: Embedding  of vertex𝑣𝑖  

KL-divergence • Objective:  

 

𝑣𝑖  

LINE 
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Preserving the Second-order Proximity 

• Given a directed edge (𝑣𝑖 , 𝑣𝑗), the conditional probability of 𝑣𝑗 given 𝑣𝑖 is: 

 

 

 

 

𝑝2 𝑣𝑗|𝑣𝑖  =
exp(𝑢𝑗

′𝑇 ⋅ 𝑢𝑖)

 exp(𝑢𝑘
′𝑇⋅ 𝑢𝑖)

|𝑉|
𝑘=1

 

𝑝 2 𝑣𝑗|𝑣𝑖  =
𝑤𝑖𝑗

 𝑤𝑖𝑘𝑘∈𝑉

 

𝑂2 = 𝜆𝑖𝑑(𝑝 2 ⋅ 𝑣𝑖 , 𝑝2 ⋅ 𝑣𝑖 )

𝑖∈𝑉

 

∝ −  𝑤𝑖𝑗 log 𝑝2(𝑣𝑗|𝑣𝑖)

𝑖,𝑗 ∈𝐸

 

𝜆𝑖:  Prestige of vertex in the network 
𝜆𝑖 =  𝑤𝑖𝑗𝑗  

 
𝑢𝑖: Embedding  of vertex i when i is a source node; 
𝑢𝑖
′: Embedding  of vertex i when i is a target node.  

 

• Objective:  

 

LINE 
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Preserving both Proximity 

• Concatenate the embeddings individually learned by the two proximity  
 

First-order 

Second-order 

LINE 
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LINE 



Questions 

• How to model nodes with a small degree 

• How to model new nodes 



Solutions 



Network Embedding Models 

• DeepWalk 

• Node2vec 

• GraRep (Cao et al., CIKM 2015) 

• LINE 

• SDNE 



SG with NS ≈ Factorization on PMI matrix 

 

Omer Levy, Yoav Goldberg: 
Neural Word Embedding as Implicit Matrix Factorization. NIPS 2014: 2177-2185 



Factorization with k-step context 



DeepWalk as MF 

• In SG with NS, we factorize the sum of k-step 
transition matrices 

Cheng Yang, Zhiyuan Liu: Comprehend DeepWalk as Matrix 
Factorization.  CoRR abs/1501.00358 (2015) 



Problems with DeepWalk 

• Neighbors are not equal in the random walks 



Use all k-step representations 



Experiments 



Experiments 

• Step length k 

– We found the performance of K = 4 is slightly 
better than K=3, while the results for K=5 is 
comparable to K=4. 

– We observed that the performance of K=7 is no 
better than that of K=6. 



Network Embedding Models 

• DeepWalk 

• Node2vec 

• GrapRep 

• LINE 

• SDNE (Wang et al., KDD 2016) 



SDNE 

• Preliminary 

– Multi-layer perceptron  

 



SDNE 

• Preliminary 

– Autoencoder  

 



SDNE 

• Preliminary 

– Autoencoder  

• The simplest case: a single hidden layer 



SDNE 

• Preliminary 

– Autoencoder  

• The simplest case: a single hidden layer 



SDNE 

• First-order proximity 

– Linked nodes should be coded similarly  



SDNE 

• Second-order proximity 

– The model should reconstruct the neighborhood 
vectors 

– Similar nodes even without links  
can have similar codes 

• Or we can not reconstruct the  
neighborhood 



SDNE 

• Network reconstruction 

 

 

 

• Link prediction 



Network Embedding Models 

• DeepWalk 
– Node sentences + word2vec 

• Node2vec 
– DeepWalk + more sampling strategies  

• GrapRep 
– Separate MF with each k-step transition matrix 

• LINE 
– Shallow + first-order + second-order proximity  

• SDNE 
– Deep + First-order + second-order proximity  

 



Advanced Models 

• Beyond shallow embedding 

• Incorporating vertex information 

• Incorporating edge information 

 



Beyond shallow embedding 

• RNN base models (Li et al., WWW 2017) 

– Any sequence models can be applied to 
characterize node and sequence representations 



Beyond shallow embedding 

• (Gated) Graph Neural Networks (Li et al., 2015) 

 

 

 

 



Beyond shallow embedding 

• Graph Convolutional Networks (Kipf et al., 2016) 

 

 

 

 



Incorporating Vertex Information 

• Vertex labels (Tu et al., IJCAI 2016) 

– Given a graph G=(V,E), a node v is possibly with a label lv 

– Goal: learn a representation xv to predict the vertex label 

– Solution: 

• (1) DeepWalk as MF 

 

• (2) Max-margin classifier  



Incorporating Edge Information 

• Edges are with label information (Tu et al., IJCAI 2017) 

For each edge (u,v), we have  

TransE construction for networks with 
labeled edges 



Applications of Network Embedding 

• Basic applications 

• Data Visualization  

• Text classification 

• Recommendation  



Basic Applications 

• Network reconstruction 

• Link prediction  

• Clustering 

• Feature coding  

– Node classification 

• Demographic prediction  

• Question: how to infer the demographics of a 
microblog user  



Applications of Network Embedding 

• Basic applications 

• Data Visualization (Tang et al., WWW 2016) 

• Text classification 

• Recommendation  



Data Visualization 



Data Visualization 

• Construction of the KNN graph 



Data Visualization 

• Visualization-based embedding 



Data Visualization 

• Non-linear function 



Data Visualization 

• Accuracy  

 

 

 

 

• Running time 



Data Visualization 



Applications of Network Embedding 

• Basic applications 

• Data Visualization  

• Text classification (Tang et al., KDD 2015) 

• Recommendation  



Network embedding helps text modeling 

Text representation, e.g., word and document 
representation, … 

… 

degree 

network 

edge 

node 
word  

document 

classification 

text 

embedding 

word co-occurrence network Free text 

Deep learning has been attracting increasing 
attention … 

A future direction of deep learning is to integrate 
unlabeled data … 

The Skip-gram model is quite effective and 
efficient … 

Information networks encode the relationships 
between the data objects … 

If we have the word network, we can a network embedding model to learn word representations.  

Text Classification  
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• Adapt the advantages of unsupervised text embedding approaches but naturally 
utilize the labeled data for specific tasks 

 

• Different levels of word co-occurrences: local context-level, document-level, label-
level 

Text corpora 

degree 

network 

edge 

node 
word  

document 

classification 

text 

embedding 

(a) word-word network 

Heterogeneous text network 

Text representation, e.g., word and document 
representation, … 

… 

label 

label 

label document 

Deep learning has been attracting increasing 
attention … 

A future direction of deep learning is to integrate 
unlabeled data … 

The Skip-gram model is quite effective and 
efficient … 

Information networks encode the relationships 
between the data objects … 

null 

null 

null 

text 

information 

network 

word 
… 

classification 

label_2 

label_1 

label_3 
… 

(c) word-label network 

… 

text 

information 

network 

word 
… 

classification 

doc_1 

doc_2 

doc_3 

doc_4 
… 

(b) word-document network 

… 

Text Classification  
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Bipartite Network Embedding 

– Extend previous work LINE (Tang et al.  WWW’2015) on large-scale information network 
embedding 

– Preserve the first-order and second-order proximity 

– Only consider the second-order proximity here 

 

 

 

 

 
 

 
Tang et al. LINE: Large-scale Information Network Embedding. WWW’2015 

𝑉𝐴 𝑉𝐵 

𝑣𝑖  

𝑣𝑗 p 𝑣𝑗|𝑣𝑖 =
exp(𝑢𝑗

𝑇⋅𝑢𝑖)

 exp(𝑢𝑗′
𝑇 ⋅𝑢𝑖) 𝑗′∈𝐵

 

𝑂 = −  𝑤𝑖𝑗 log 𝑝(𝑣𝑗|𝑣𝑖)

𝑖,𝑗 ∈𝐸

 

• For each edge 𝑣𝑖 , 𝑣𝑗 , define a conditional probability 

• Edge sampling and negative sampling for optimization 

• Objective: 

Text Classification  
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Heterogeneous Text Network Embedding 

• Heterogeneous text network: three bipartite networks 
– Word-word (word-context), word-document, word-label network 

– Jointly embed the three bipartite networks 

• Objective 

 

• where  

O𝑝𝑡𝑒 = 𝑂𝑤𝑤 + 𝑂𝑤𝑑 + 𝑂𝑤𝑙  

𝑂𝑤𝑤 = −  𝑤𝑖𝑗 log 𝑝(𝑣𝑖|𝑣𝑗)

𝑖,𝑗 ∈𝐸𝑤𝑤

 

𝑂𝑤𝑑 = −  𝑤𝑖𝑗 log 𝑝(𝑣𝑖|𝑑𝑗)

𝑖,𝑗 ∈𝐸𝑤𝑑

 

𝑂𝑤𝑙 = −  𝑤𝑖𝑗 log 𝑝(𝑣𝑖|𝑙𝑗)

𝑖,𝑗 ∈𝐸𝑤𝑙

 

Objective for word-word network 

Objective for word-document network 

Objective for word-label network 

Text Classification  
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Results on Long Documents: Predictive 

20newsgroup Wikipedia IMDB 

Type Algorithm Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 

Unsupervised LINE(𝐺𝑤𝑑) 79.73 78.40 80.14 80.13 89.14 89.14 

 
 
 
Predictive 
embedding 

CNN 78.85 78.29 79.72 79.77 86.15 86.15 

CNN(pretrain) 80.15 79.43 79.25 79.32 89.00 89.00 

PTE(𝐺𝑤𝑙) 82.70 81.97 79.00 79.02 85.98 85.98 

PTE(𝐺𝑤𝑤 + 𝐺𝑤𝑙) 83.90 83.11 81.65 81.62 89.14 89.14 

PTE(𝐺𝑤𝑑 + 𝐺𝑤𝑙) 84.39 83.64 82.29 82.27 89.76 89.76 

PTE(pretrain) 82.86 82.12 79.18 79.21 86.28 86.28 

PTE(joint) 84.20 83.39 82.51 82.49 89.80 89.80 

PTE(joint) > PTE(pretrain) 

PTE(joint) > PTE(𝐺𝑤𝑙) 

PTE(joint) > CNN/CNN(pretrain) 

Text Classification  
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Results on Short Documents: Predictive 

DBLP MR Twitter 

Type Algorithm Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 

Unsupervised 
embedding 

LINE 
(𝐺𝑤𝑤 + 𝐺𝑤𝑑) 

74.22 70.12 71.13 71.12 73.84 73.84 

 
 
 
Predictive 
embedding 

CNN 76.16 73.08 72.71 72.69 75.97 75.96 

CNN(pretrain) 75.39 72.28 68.96 68.87 75.92 75.92 

PTE(𝐺𝑤𝑙) 76.45 72.74 73.44 73.42 73.92 73.91 

PTE(𝐺𝑤𝑤 + 𝐺𝑤𝑙) 76.80 73.28 72.93 72.92 74.93 74.92 

PTE(𝐺𝑤𝑑 + 𝐺𝑤𝑙) 77.46 74.03 73.13 73.11 75.61 75.61 

PTE(pretrain) 76.53 72.94 73.27 73.24 73.79 73.79 

PTE(joint) 77.15 73.61 73.58 73.57 75.21 75.21 

PTE(joint) > PTE(pretrain) 

PTE(joint) > PTE(𝐺𝑤𝑙) 

PTE(joint) ≈ CNN/CNN(pretrain) 

Text Classification  
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Applications of Network Embedding 

• Basic applications 

• Data Visualization  

• Text classification 

• Recommendation (Zhao et al., AIRS 2016) 



Traditional Recommendation Methods 

• Popularity 

• Item-KNN 

• User-KNN 

• Mixture of item-KNN and user-KNN 

• Bayesian Personalized Ranking 

 



Recommendation 

• From training records to networks 



Recommendation 

• Learning Distributed Representations for 
Recommender Systems with a Network 
Embedding Approach 

– Motivation 



Recommendation 

• Given any edge in the network 



Recommendation 

• User-item recommendation 



Recommendation 

• User-item-tag recommendation 



Conclusions 

• There are no boundaries between data types 
and research areas in terms of mythologies  

– Data models are the core 

• Even if the ideas are similar, we can move 
from shallow to deep if the performance 
actually improves 

• Task-specific and data-specific network 
embedding models are hot research topics 
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