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Success stories of deep neural models

30% - 28.2%

25.8%
25% The ImageNet ILSVRC challenge consists of
20% - 1.2 million images associated with 1'000
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e Speech Recognition ~ Machine Translation =
Object Recognition Image Captlonmg


http://www.image-net.org/challenges/LSVRC/

Success stories of deep neural models

Painting

Deep Learning for Games
DeepMind AlphaGo

Driving

Playing games

History is made: Google's Alpha ins the r h against Go champion Lee Sedol



Deep Learning for IR

SIGIR papers with title words: Neural,

Dominating multiple fields:
2011 2013 2015 2017

Embedding, Convolution, Recurrent, LSTM

speech  vision NLP IR Neural network papers @
SIGIR
25%
20%
15%
23%
10%
Christopher Manning. Understanding > . 8%
4%
Human Language: Can NLP and Deep 0% .
. SIGIR 2014 SIGIR 2015 SIGIR 2016 SIGIR 2017
Learning Help? Keynote SIGIR 2016 (accepted)  (accepted)  (accepted)  (accepted)

Figure from Mitra & Craswell Tutorial @ WSDM 2017


http://nlp.stanford.edu/manning/talks/SIGIR2016-Deep-Learning-NLI.pdf

Neural Models for IR

This tutorial mainly focuses on:

* Retrieval of short/long texts, given a text query

* Representation learning
e Shallow and deep neural networks

This presentation includes content from WSDM 2017 tutorial “Neural Text
Embeddings for Information Retrieval” by Mitra and Craswell

For broader topics (multimedia, knowledge) see:
Craswell, Croft, Guo, Mitra, and de Rijke. Neu-IR: Workshop on Neural
Information Retrieval. SIGIR 2016/SIGIR 2017 workshop



http://sigir.org/wp-content/uploads/2017/01/p096.pdf
https://www.slideshare.net/BhaskarMitra3/neural-text-embeddings-for-information-retrieval-wsdm-2017

Today’s Agenda

Part |
 Fundamentals of IR
* Word Representations
* Word Representations for IR

Part Il
* Supervised learning for rank
* Deep neural nets
* Deep neural nets for IR
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Fundamentals of IR

Chapter 1



Information retrieval (IR) terminology

Information retrieval (IR) is the activity of obtaining information
resources relevant to an information need from a collection of
information resources.

-- Wikipedia

Information

Deep Learning

Y / query

Relevance

(documents satisfy
information need)

yr = N
N Database: indexed

results ranking documents
(document list)



IR Applications
| |Adhocretrieval [QuestionAnswering

Query Keywords Natural language question

Document Web page, news article Supporting passage, entities, facts

TREC experiments TREC ad hoc TREC question answering

Evaluation metric Average precision, NDCG Mean reciprocal rank

Research solution Modern TREC rankers IBM@TREC-QA
BM25, query expansion, learning to rank, Answer type detection, passage retrieval, relation
links, clicks retrieval, answer processing and ranking

In products Web search systems: Google, Watson@Jeopardy

Bing, Baidu, Yandex, ...
This tutorial Long text ranking Short text ranking

Other applications:

* CQA: Similar/related question retrieval
* Conversation: Retrieval response given a sentence



History of IR

1950-1960: early days and first empirical observations

» Hypothesis on automated indexing (Luhn)

> First experiments and development of guidelines for information retrieval systems
evaluation (Cleverdon’s Cranfield 1 and Cranfield 2)

» Early experiments of a Vector Space Model for ranking (Salton’s SMART)
1970-1980: active development of information retrieval
» Establishment of a Vector Space Model for ranking

» Ranking models based on probability ranking principles (PRP)

1990s: further development and formalization of IR (new applications
and theoretical explanations)

> Statistical Language Models (Croft’ 98)
» Development of large scale collections for IR system evaluation (TREC)
2000s: web search, large scale search engine in the wild, anti-spam
» Machine Learning to Rank
» MapReduce, GFS, Hadoop ...

2010s: entity search, social search, real-time search



Challenges in (neural) IR [1/4]

* Vocabulary mismatch Vocab mismatch:

 Worse for short texts

: How many people live in Sydney? . .
Q y PEop yeney e Still an issue for long texts

» Sydney’s population is 4.9 million
[relevant, but missing ‘people’ and ‘live’]

» Hundreds of people queueing for live music in Sydney
[irrelevant, and matching ‘people’ and ‘live’]

. 3
 Robustness to rare mputs 2 < .
» More than 70% of the distinct query are seen only once EL;E N : -""-.____
» Q: “pekarovic land company” ° ; | --"'-__

logys(query ID)

Learning good representation of text is important for dealing with vocabulary

mismatch, but exact matching is also important to deal with rare terms and intents.



Challenges in (neural) IR [2/4]

700
600

e QandDvaryinlength g
2 400
» Models must handle short (keyword) S %0
queries and long (verbose) queries $ 200
100 4
» Models must handle varied length i i e e Ry
d ocuments Document Length

Figure from: AleAhmad, Abolfazl, et al. "Hamshahri: A
standard Persian text collection." Knowledge-Based
Systems 22.5 (2009): 382-387.

- Different hypothesis about long document [Roberson et al. 1994]

) Verbosity hypothesis : Long document covering a similar scope but with
more words.

) Scope hypothesis : long document consists of a number of unrelated
short documents concatenated together.

A good retrieval model should be able to handle and robust to varied length

gueries and documents



Challenges in (neural) IR [slide 3/4]

* Need to learn Q-D relationship that i
generalizes to the tail .
2 O
» Unseen Q 5 &°
a —e— Movies
» Unseen D & -.®  Music
. . “|-4&— Web Browsing ‘
» Unseen information needs _ | search Resuits o
» Unseen vocabulary T Search Queries
2 T | 1 I |
* Robustness to corpus variance 1609  1e-05  1e-0f
» Simple model vs. deep models Normalized Rank
> " ” ,Iiigurefro?:r?olel, Brogfer, Sabrilovich,lanqsang.
natomy of the long tail: ordinar eople wit
OUt Of bOX performance extraord\i/narv tasteg. WWW Con\lceeen?:e 2010

» Overfitting

A good retrieval model should be able to capture the essential relevance patterns

between query and document, and generalize well on unseen data


http://www.cs.technion.ac.il/~gabr/publications/papers/Goel2010ALT.pdf

Challenges in (neural) IR [4/4]

* Need to interpret words based on context (e.g., temporal)

query:
“United States president”

Today Recent In older (1990s) TREC data

* Robustness to errors in input
» Traditional IR models: specific components for error corrections
» Neural IR models: character-level operation and/or representation
learning from noisy data

e Efficient retrieval over many documents
> Inverted files, KD-Tree, LSH, ...



Popular IR Metrics

IR metrics focus on rank-based comparison of the retrieved result set R to an
ideal ranking of documents, as determined by manual judgments or implicit
feedback from user behavior data.

1. Precision and recall

> (i, d)cRr, Telq(d)
| Ry

2. Mean reciprocal rank (MRR)

> (i, dycR, "elg(d)
> _dep Telq(d)

Recally =

P'recisionq =

l,(d
RR; = max re Q( )
(i,d)ERq 1

3. Mean average precision (MAP)

> (i.dyer, Precisiong; x rely(d)

Afuqu =

> dep Telq(d)
4. Normalized discount cumulative gain (NDCG)
grelg(d) _ 1 DOG
DCG, = . NDCG., = g
U ib, 08+ 1) 17 IDCG,



Traditional IR Models

1. Boolean models (Lancaster et al., 1973):
» Simple model based on set theory
» Queries specified as boolean expressions

2. Vector Space models (Salton et al., 1983):

»  Unique terms that form the VOCABULARY
» These “orthogonal” terms form a vector space.

3. Probabilistic models:
» BM25 (Robertson et al., 1994)
» Language model (Croft et al., 1998)
» Translation models (Berger and Lafferty, 1999)
» Dependence model (Metzler and Croft, 2005)

4. Pseudo relevance feedback (Lavrenko, 2008, Lavrenko and Croft,
2001)

> Execute an additional round of retrieval



Learning to Rank
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Neural Approaches to IR

e Related document search:
» semantic hashing, Salakhutdinov and Hinton (2009)...

 Ad-hoc search:

» Word Representation based models
= FV, Clinchant, S. and Perronnin, F. (2013),
= QLM, Sordoni et al. (2014);
= NWT, Guo et al. (2016)

» Neural network based models
= Title/Snippet-based search, DSSM, Huang et al. (2013); ...
= Different Granularity search: Cohen et al. (2016);
= Full document search: DRMM, Guo et al. (2016).

* Wider adoption in IR from 2015:
» QA/CQA, query completion, query suggestion, sponsored search
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Local Representation of Words

Words are the building blocks of texts
Traditional IR often treats words as atomic symbols:

Man Woman Dog Computer

* also known as “one-hot” or local representation

One-Hot Representation man
L [10,..,0,0,...,0,0]
[ (0.1.....0,0,...,0,0

dog [0,o,..,1,0,...,0,0]

T 100,.,0,0,..,1,0 @

* Jlocal representation: each word is locally represented
by a distinct node.




Limitations of Local Representations

* Local representation makes a strong independent
assumption between words

Local Representation

1,0,...,0,0,...,0,0] cos(car, automobile) = 0!
0,1,...,0,0,...,0,0]
. ) man
0,0,...,1,0,...,0,0] -
=10ielnlelel1124 [O,0,...,0,0,...,1,0 l
* Local representation is not efficient i

» require N nodes to represent N words



Limitations of Local Representations

* Local representations are arbitrary, and cannot

generalize between words
» The model can leverage very little of what it has learned
about “groups” when it is processing data about “teams”

Training corpus:
 There are three teams left for the qualification.

* four teams have passed the first round.

» four groups are playing in the field.

Assign a probability to an unseen bigram “three groups”:

p(groups|three) = 0! No generalization



“The first thing you do with a word symbol is you
convert it to a word vector. And you learn to do
that, you learn for each word how to turn a
symbol into a vector, say, 300 components, and
after you've done learning, you’ll discover the
vector for Tuesday is very similar to the vector for
Wednesday.”

— Geoffrey E. Hinton

Deep Learning.
Royal Society keynote
recorded May 22, 2015



Distributed Representation of Words

* Vector space models (VSM) represent (embed) words in a
continuous vector space

* also known as distributed representations?': all the words
share all the nodes

Vector Space Representation
man

.,0.00524902, ..., 0.0209961] |
.,—0.205078, . .., -0.0294189] l
,—0.306641, ..., 0.222656]

0.107422, ..., -0.0375877, ..., ~0.0620117

Vectors from GoogleNews-vectors-negative300.bin

|® ©9 @

Hinton, G. E., et al. Distributed representations. In Rumelhart, D. E., McClelland, J. L., and PDP Research Group, C., editors, Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1,1986, pages 77—109. MIT Press, Cambridge, MA, USA.



Pros of Distributed Representations

* Distributed representations

» Semantically similar words are mapped to nearby points

e [0.326172, . . ., 0.00524902, . . ., 0.0209961]
IR [0.243164, . . ., -0.205078, . . ., -0.0294189]
_ [0.0512695, . . ., ~0.306641, . . . , 0.222656]

[0.107422, . . ., ~0.0375977, . . ., ~0.0620117]

cos(man, women) =0.77

cos(man, automobile) = 0.25



Pros of Distributed Representations

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA  DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND  GRACE CAPCOM YELLOWISH RIPPED AMPERES

What words have embeddings closest to a given word?

From Collobert et al. (2011)

city ?\

Y

-

-

k3

travel - =

" relative

) 4



The Brain Dictionary

Huth, A.G., de Heer, W.A., Griffiths, T.L., Theunissen, F.E., Gallant, J.L., 2016. Natural speech reveals the
semantic maps that tile human cerebral cortex. Nature 532, 453—458. doi:10.1038/nature17637



Pros of Distributed Representation

king

/.\*

walked

7

o

walking

swam

‘ Canada

-

swimming

Spain

Rome

Berlin

Italy

Germany

Turkey ~——~_________~“__‘
Ankara

T ———————— Moscow

Ottawa

Russia
Japan ——— o . okyo

vVietnam —————————— ___ Hanoi
China Beijing

Country-Capital

Male-Female Verb tense
Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee

big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer
Japan - sushi

small: larger
Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo
Germany: bratwurst

cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy

France: tapas

quick: quicker
Kona: Hawaii
Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza

From Tomas Mikolov et al.
Efficient estimation of word
representations in vector
space. In Proceedings of
Workshop of ICLR, 2013.




Pros of Distributed Representation

 Distributed representation is efficient

» N nodes can represent 2N words (binary case)
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Pros of Distributed Representation

* Distributed representations can generalize between words
» Semantically similar words are mapped to nearby points

/——'te ilm S ~ Training corpus:

/ groups r * There are three teams left for the qualification.

~~

-,
————
o TS ——

,/
/ %
V4 / S /
A e
three S T )
i

four

* four teams have passed the first round.

* four groups are playing in the field.

Assign a probability to an unseen bigram “three groups”:

p(teams|three) >0 p(groups|three) >0

* Generalization ability: language model using distributed
word representation can assign a reasonable probability



“The gains so far have not so much been from true
Deep Learning (use of a hierarchy of more abstract
representations to promote generalization) as from
the use of distributed word representations—
through the use of real-valued vector
representations of words. Having a dense, multi-
dimensional representation of similarity between
all words is incredibly useful in NLP...”

— Christopher D. Manning

Computational Linguistics and Deep Learning.
Computational Linguistics, 41(4):701-707, 2015.



How to learn word representations?

the doctor. </p=<p> "Just checking on the bardiwac , he boomed as he came back. "Edith's very
</p=<p=> "1 hope you'll take to a good French bardiwae , chimed in Arthur Iverson jovially. "One
*Our host did slip out to attend to the bardiwac &hellip;' </p=<p=> "That was before the shrimp
Iverson did when he went through to see to the bardiwac before dinner.” Henry rubbed his hands.
and drinking red wine from France -- sour bardiwac , which had proved hard to sell. The room
eyes were alight and he was drinking the bardiwac down like water. "It is like Hallow-fair
quizzically at him and offering him some more bardiwae . </p><p=> He shook his head. "T will sleep
drinks (as Queen Victoria reputedly did with bardiwac and malt whisky), but still the result
. . Do we really “wash down' a good meal with bardiwac 7 Port is immediately suggested by Stilton
Wh atis th € meani ng Of completely different: cheap and cheerful bardiwac . Two good examples from Victoria Wine are
“ b a rd iwa C ” ‘p examples from Victoria Wine are its house bardiwac , juicy and a touch almondy, a good buy
opened a bottle of rather rust-coloured bardiwac . I ate too much and drank nearly three-quarters
elections, it was apparent the SDP of * bardiwac and chips' mould-breaking fame at the time
the black hills. Not a night of vintage bardiwac . </p><p> Burnley: Pearce, Measham, McGrory
SONS Old School -- the Marlborian navy, bardiwac and slim-white stripe. Heavy woven silk
white-hot passion. We are like a good bottle of bardiwac ; we both have sediment in our shoes. </p>
few minutes later he was uncorking a fine bardiwac in Masha's room, saying he had something
the phone. Surkov silently offered me more bardiwac but I indicated a bottle of Perrier. </p>
defenders as Villa swept past them like a bardiwae and blue tidal wave. </p><p> Things are difficult
campaign. Refreshed by a nimble in-flight bardiwac , they serenaded him with a special song

From Stefan Evert. Distributional Semantic Models . NAACL-HLT 2010 Tutorial



Distributional Semantics in a Nutshell

glass drink grape red meal
bardiwac 10 22 43 16 29
wine 14 10 4 15 45
car 5 0 0 10 0

< bardiwac

4 Wine

—.p car




Distributional Hypothesis

“Words that occur in the same contexts tend to have

similar meanings.”
-- Zellig Harris [Harris, 1954]

“ A word is characterized by the company it keeps.”
-- Firth, J. R. [Firth, 1957]



Distributed and distributional

* Distributed representation:
Vector represents a concept as a

pattern, rather than 1-hot

Distributional methods use
distributed representations

mange | @@ . )

¢

* Distributional semantics:
Linguistic items with similar
distributions (e.g. context words) have
similar meanings

/‘\

You shall know a word by
the company it keeps

\

\
1
1
|

1
|
I
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Context is the key

Context is the key in distributional hypothesis.
What type of context you use decides what kind of meaning
or semantic relations between words you obtain.

- Word-Document banana o o @
= v \2 v
S & Doc2 Doc7  Doc9
2 c
é € Word-Word  banana ® ® @ @ ®
55 A A v v
=) (yellow) (on) (grows) (tree) (africa)

L Word-WordDist banana ® @ @ ® @

2 2 2 2 2
(yellow, -1) (on, +2) (grows, +1) (tree, +3) (africa, +5)

Word hash banana ® - X ® @
v v v 2

(not context-based) \”
#ba na# ana nan ban



Two tales of semantic relationships

e Syntagmatic (or topical) relations: concerning positioning,
and relate words that co-occur in the same text region.

e Paradigmatic (or typical) relations: concerning substitution,
and relate words that occur in the same context but not at
the same time.

syntagmatic

Albert Einstein was a physicist.

paradigmatic

Richard Feynman was a physicist.

syntagmatic

Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Linguistics, 20(1):33-54.
Fei Sun et al. Learning Word Representations by Jointly Modeling Syntagmatic and Paradigmatic Relations. In
Proceedings of ACL. 2015, 136-145



Syntagmatic Models

Distributional models with syntagmatic relations collect
information about which context regions words occur

syntagmatic
di: Albert Einstein was a physicist.
d>: Richard Feynman was a physicist.
phovsicist
dl dZ : Feynman [ ]
Einstein 1 0
Feynman 0 1

physicist 1 1 -

Einstein




Paradigmatic

Distributional models with paradigmatic relations collect
information about which other words surround a word

paradigmatic

Albert Einstein was a physicist.

Richard Feynman was a physicist.

Einstein | Feynman | physicist
Einstein 0 0 1
Feynman 0 0 1
physicist 1 1 0

p
Einstein
o
Feynman
physicist
. >



The refined distributional hypothesis: “A
distributional model accumulated from co-
occurrence information contains syntagmatic
relations between words, while a distributional
model accumulated from information about
shared neighbors contains paradigmatic
relations between words.”



Distributed Representation

* Explicit vector representations
» Vector space model based on raw counts of context features
» Highly sparse and high dimensional

* Embedding

» A representation of items in a new space such that the
relationships between the items are preserved from the original
representation

> A simpler representation
= A reduction in the number of dimensions
= Anincrease in the sparseness of the representation
= Disentangling the principle components of the vector space
= A combination of these goals



Word Embedding Models
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Discussion of word representations

* Distributed representation is learned based on

distributional hypothesis
» Weighted counts, matrix factorization, neural embedding

e Choice of contexts affects semantics
» Syntagmatic vs Paradigmatic

e Efficiency (i.e. large data) weights more than complex

model
» Scalability could be the key advantage of neural word

embeddings



Chapter 3

Word Embeddings
for IR




Traditional IR Foundations

Retrieval based on local representations (BoW)

As for the Arabian and Palestinean voices that are against
the current negotiations and the so-called peace process,

they are not against peace per se, but rathér for their well-
founded predictions that Israel would

peace process in the Middle

!

peac

Syntactic
Matching

(N

Process

Midd

O S = =

Eas negotiations

Bag-of-words Representation

T give an inch of

Bag-of-words Representation



When Word Embedding Comes...

Retrieval based on distributed representations (BoWE)

peace process in the Middle East

One-hot embedding

[0.1 0.3°0.03 0 04....

[0.2 0.13 0.03 0 O/...
[0.13 0.3 0.3 070.2 ....

[0.3 04 0.09 0 03...

0.05 0.12 0.02]

0.07 0.09 0.01]
0.08 0.87 0.02]

0.05 0.34 0.14]

idf

4.8

1.2

1.4

1.6

Semantic
Matching

(—)

Bag-of-word-embedding Representation

As for the Arabian and Palestinean voices that are against
the current negotiations and the so-called peace process,
they are not against pleace per se, but rathér for their well-
founded predictions that Isracl would NOT give an inch of
the West bank (and most probably the’same for Golan
Heights) back to th¢ Arabs. An 18 ponths of "negotiations”
in Madnd, and Washington proved these predictions. Now
many will jump onjnic saying why are you blaming israchis
for no-respilt negotiations. | would say why svould the
Arabs stajl the négotiations! what do theyhave to loose ?

One-hgt embedding
[0.4/0.3 0.45 0 0.3

[0.2 0.1 0.03 0,0.1 ....
[0.1 0.3 0.13,0 0.1....
[0.3 0.5 0.721 0 0.2 ....
[0.7 0.9 0.01 0 0.6....

...0.090.24 0.7 0.01]
0.18 0.91 0.2 0.02]
0.16 0.25 0.8 0.03]
0.030.170.1 0.15]
0.150.350.4 0.26]

idf
1.2
1.3
2.5
5.2
1.3

Bag-of-word-embedding Representation



How to incorporate embeddings

1. Extend traditional IR models

» Term weighting, language model smoothing, translation
of vocab

2. IR models that work in the embedding space
» Centroid distance, word mover’s distance

3. Expand query using embeddings (followed by non-
neural IR)
» Add words similar to the query



Traditional Term Weighting

* Inverse document frequency * Term frequency
Robertson and Sparck-Jones (1977) Harter (1975)
N
o gg —e—D not about t
© : .
’ = 0.4 —e—D is about t
>
=03
o)
200 2-Poisson model of e
(@)
& 01

RSJ _ o 1 H 05N = R—ni+7:+05) o adjyst TF model for doc length

0 2 4 6 8 10 12 14 16 18 20
Term Frequency of tin D

w

¢ (?’L?, -1+ 0.5)(R —7r; + 0.5)
N —n; +0.5
wPF = log Y Rank D by: ¥.cq TF(t,D) * IDF(t)

Robertson and Zaragoza. The probabilistic relevance framework: BM25 and
beyond. Foundations and Trends® in Information Retrieval 3, no. 4 (2009)



http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf

Term weighting using word embeddings

r

. S T (term recall)

B | | * Fraction of positive docs with t
o * The r and R were missing in

| S - RS

T ~J . x—t—7
e AL |
;i ctlisembeddingoft

e - * q is centroid of all query terms

-~ o1 2 1 I v
B =arg minsly - X+ A8 o \WWeight TF-IDF using y

Zheng and Callan. Learning to reweight terms with distributed representations. SIGIR 2015



http://dl.acm.org/citation.cfm?id=2767700

Term weighting using word embeddings

Performance with language model:

Query Model ROBUSTO04 WT10g GOV2 ClueWeb09B

P@10 | MAP P@I0 | MAP PQ@I0 | MAP P@i0 | MAP
BOW 0.4245 | 0.2512 0.3290 | 0.1943 0.5054 | 0.2488 0.2667 | 0.0702
SD 0.4414 | 0.2643 0.3400 | 0.2032 0.5342 | 0.2688 0.2798 | 0.0745
WSD (Table 7 in [2]) - 0.2749 - 0.2260 - 0.2946 - -
DeepTR-BOW 0.4430° | 0.2591° 0.3280 | 0.2103 0.5208 | 0.2646° 0.2682 | 0.0718
(Corpus-specific 300) (+38.2/-1.9) (+8.2/+38.5) (+6.8/-1.6) (+2.2/-8.6)
DeepTR-BOW 0.4430° | 0.2650° 0.3330 | 0.2111° 0.5208 | 0.2646° 0.2667 | 0.0741
(GOV2 300) (+5.5/+0.8) (+8.7/+8.9) (+6.8/-1.6) (+5.6/-0.5)
DeepTR-BOW 0.4454% | 0.2657° 0.3270 | 0.2129 0.5121 | 0.2685° 0.2682 | 0.0718
(ClueWeb09B 300) (+5.8/+0.5) (+9.6/+4.8) (+7.9/-0.1) (+2.2/-3.6)
DeepTR-BOW 0.4450° | 0.2673° 0.3380 | 0.2122° 0.5221 | 0.2630° 0.2667 | 0.0732
(Google 300) (+6.4/+1.2) (+9.8/+44.5) (+5.7/-2.2) (+4.2/-1.8)
DeepTR-SD 0.4558° | 0.2754° 0.3510 | 0.2182° 0.5490° | 0.2831° 0.2879° | 0.0748
(Corpus-specific 300) (+9.6/44.2) (+12.8/+7.4) (+18.8/4+5.3) (+6.5/40.5)
DeepTR-SD 0.46107 | 0.2781° 0.37007 | 0.2223° 0.5490° | 0.2831° 0.2854 | 0.0806°
(GOv2 300) (+10.7/+5.2) (+14.4/+9.4) (+13.8/+5.3) (+14.8/+8.2)
DeepTR-SD 0.4659° | 0.2810° 0.3610° | 0.2279° 0.5597° | 0.2890° 0.2879° | 0.0748
(ClueWeb09B 300) (+11.9/+6.3) (+17.8/+12.1) (+16.2/4+7.5) (+6.5/40.5)
DeepTR-SD 0.4627° | 0.2842° 0.3560 | 0.2256° 0.5497° | 0.2814° 0.2869 | 0.0780°
(Google 300) (+18.1/+7.5) (+16.1/+11.0) (+18.1/+4.7) (+11.0/+4.7)

b : Statistically significant difference with BOW
s : Statistically significant difference with SD

DeepTR term weights perform better than the unweighted query model over all

collections

No clear winner among different vector resources




Traditional IR model: Query likelihood

Language modeling approach to IR is quite extensible
P@ld) = | | Paslad) P(t|ld) = AP(tld) + (1 - D)P(¢|C)
q;€Q
= Frequent words in d are more likely (term frequency)

= Smoothing according to the corpus (plays the role of IDF)
= Various ways of dealing with document length normalization

background model

P(t|C) = ¢f@®

()

P(t|d) = C{;T)

document model

A Word Embedding based Generalised Language Model for Information Retrieval, D. Ganguly et. al. 2015 SIGIR.



Generalized Language Model

background model p (tl C) — cf(t)

cS
m Pl = 57
0 Noise Channel
. ,. sim(t',t) tf (¢, d)
Term transformation P t}f d) = qg;rn,( ’
z LD =@ g
document model ' ) )
P(t,?f!IC) _ SET?’I(f-’,t) .Cf(t )
Zt”ENt sim(t,t") cS
P(Qld) = 1_[ P(q;|d) sim(t, ') = cos(t.t)

q;€Q

~~~~~~
~~~~~
e N
-,
® ~

P(t|d) = )\P(t|d)—h(:g > Pt d)P(t’]E;gw Y Pt ,0)P(t|C)+(1-A—a—B)P(t|C)

“t ed t'eN,
x Compares query term with

every document term

A Word Embedding based Generalised Language Model for Information Retrieval, D. Ganguly et. al. 2015 SIGIR.



Generalized Language Model
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\\ﬂ;u-o;

01

0.2 03
a

(d) Robust

0.4

Metrics
Topic Set Method MAP GMAP Recall
LM 0.2148 0.0761 0.4778
TREC-6 LDA-LM 0.2192 0.0790 0.5333
GLM 0.2287 0.0956 0.5020
LM 0.1771  0.0706 0.4867
TREC-7 LDA-LM 0.1631 0.0693 0.4854
GLM 0.1958 0.0867 0.5021
LM 0.2357 0.1316 0.5895
TREC-8 LDA-LM 0.2428 0.1471 0.5833
GLM 0.2503 0.1492 0.6246
LM 0.2555 0.1290 0.7715
Robust LDA-LM 0.2623 0.1712 0.8005
GLM 0.2864 0.1656 0.7967

A Word Embedding based Generalised Language Model for Information Retrieval, D. Ganguly et. al. 2015 SIGIR.



Neural Translation Model

NTLM - cbow

w = insider w = trading

u plwlu) u p(w|u) Translation probability from document
insider 0.285 trading 0.216 term u to query term w

fraud 0.104 traders 0.103

drexel 0.095 market 0.094 X

criminal 0.084 stock 0.090

securities 0.084 markets 0.085 pt(w|d) — y: Pt (w U)p(U|d)

racketeering 0.084  futures 0.084

ued

NTLM - skipgram \
w = insider w = trading Considers all query-document
“ p(w|u) u p(w|u) term pairs
insider 0.169 trading 0.164
fraud 0.102 traders 0.103
drexel 0.099  futures 0.099 cos(u,w)
securities 0.096 stock 0.097 Pcos (’LL|’LU) - ;
racketeering 0.093 exchange 0.094 Zu’EV COS (U , ’lU)
bribery 0.091 market 0.093

Based on: Berger and Lafferty. "Information retrieval as statistical translation." SIGIR 1999

Zuccon, Koopman, Bruza, and Azzopardi. "Integrating and evaluating neural word embeddings in information
retrieval." Australasian Document Computing Symposium 2015



http://dl.acm.org/citation.cfm?id=2838936
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.4262&rep=rep1&type=pdf

Neural Translation Model

Performance
AP88-89 (= 1,000) WSJI87-92 (u =1,500) DOTGOV (p =500) MedTrack (u = 3,500)
Method MAP P@10 MAP P@10 MAP P@i0 bpref P@10
Dirichlet LM 22.69 39.60 21.71 40.80 18.73  24.60 37.69 43.95
CTLM-MI T 23.83¢  J1.67¢ 20.75 40.73 17.06  22.40 37.02 46.42
TLM-MI-« 22.55 39.73 21.32 40.33 17.15  22.60 37.23  43.70
TLM-MI-s 22.53 39.13 22.08 41.88 18.76  24.80 38.93 49.26¢
" NTLM-skipgram  24.27% "41.00 22.66%™ 42.40% 19.32 25.00 38.83 49.75¢
NTLM-cbow 24.18¢  41.93¢ 22.62%™  42.27¢ 19.16  24.80 38.77  49.51¢

NTLM models provided high quality translations while those of
TLM-MI (Translation language model estimated by mutual
information) led to poor estimations and consequently losses in
retrieval effectiveness.



IR models in the embedding space

* Q: Bag of word vectors
* D: Bag of word vectors
* How to deal with variable length of Q and D?

N

b b Ho® ',

(%) (0 e) — —

BoWE-1 BoWE-2 BoWE-1 BoWE-2

Composition Direct Comparison



Composition: Word Embedding-Vector Space

WE-VS score

/ g\ 8:5{+q_2>_|_,,,+(ﬁ
%

[0.4 1.21.6 0214 ...0.71.24815] [2.62.5 1.4...0.90.72 1.2] 7 — Siy - Wi+ Siyn W4 ...+ SiW\NdI : W
R f24 ?
Bag-of-word-embedding Representation Bag-of-word-embedding Representation . 8
One-hot embedding idf One-hot embedding idf

sim(d, Q) =
(d,Q) 7113

0.1 0.3 0.0300.4...0.05 0.120.02 4.8
f ] [0.4 0.3 0.45 0 0.3...0.090.240.70.01] 1.2

[0.2 0.13 0.03 0 0.... 0.070.09 0.01] 1.2
[0.13 0.3 0.3 0 0.2....0.080.870.02] 1.4 [0.2 0.1 0.03 0 0.1...0.180.910.20.02] /1.3

[0.3 0.4 0.09 0 0.3...0.050.340.14] 1.6 fl : S u m

[0.1 0.3 0.13 0 0.1...0.160.250.80.03] 2.5

A . f2: weighted sum
4 g : cosine

peace process in the Middle East As for the Arabian and Palestinean voices that are against
the current negotiations and the so-called peace process,
they are not against peace per se, but rather for their well-
founded predictions that Isracl would NOT give an inch of
the West bank (and most probably the same for Golan
Heights) back to the Arabs. An 18 months of "negotiations"
in Madrid, and Washington proved these predictions. Now
many will jump on me saying why are you blaming israclis
for no-result negotiations. | would say why would the
Arabs stall the negotiations, what do they have to loose ?

Monolingual and Cross-Lingual Information Retrieval Models Based on (Bilingual) Word Embeddings, I. Vulic et. al. 2015 SIGIR.



Composition: Word Embedding-Vector Space

EN—EN NL—NL
Model 2001 2002 2003 2001 2002 2003 Too coarse-
LM-UNI 381 360 359 256 323 357 grained
LDA-IR 279 216 241 131 .143 130 compared to LM
dim:300: cs:60
WE-VS 324x  .258x 257y  203x  .237x  .224x
dam:600: c¢s:60
I WE-VS 329x 281x 262y 204x  .262x  .231x
LM+LDA 399 360 379 260 326  .357

dim:300; cs:60
LM+WE (A=0.3) 412y .381x 401y .271x .349x .372x
LM+WE (A=0.5) 429x .394x 407x .279x .370x .382x
LM+WE (A=0.7) 451x .392y .389 270 364x 373y
dim:600; cs:60
LM+WE (A=0.3) 419y .382x 403y .274x .350x .373x

LM+WE (A=0.5) 436X 301x _408x  282x 371x 383x
LM+WE (A=0.7) 430x .392y .381 268  .367x 374y

Monolingual and Cross-Lingual Information Retrieval Models Based on (Bilingual) Word Embeddings, I. Vulic et. al. 2015 SIGIR.



Composition: The Fisher Kernel Framework

FV score Fisher Kernel

X" —1 Y

g K(X,Y) =Gy Fy'Gx

X’ 51 Y

[0.4 1216 0.2 ...0.71.2481.5] [2.62.5 1.4...090.72 1.2] — G/\ L/\LAG/\

-
f
' ' f t2 Fisher Vector

Bag-of-word-embedding Representation Bag-of-word-embedding Representation
One-hot embedding idf One-hot embedding idf
[ )
0.4 0.3 0.45 0 0.3....0.090.240.7 0.01 1.2
[0.1 0.3 0.03 0 0.4....0.05 0.120.02] 48 [ ] fl . flSheI' Vector
[0.2 0.13 0.03 0 0... 0.070.09 0.01] 1.2 (0.2 0.10.0300.1...0.180.910.20.02] 13
[ ]
[0.13 0.3 0.3 0 0.2.... 0.080.870.02] 14 [0.1 030130 0.1...0.160.250.80.03] |25 f?_ . fl Sher ve Ctor
[0.3 0.4 0.09 0 0.3....0.050.340.14] 16 [0.7 0.9 0.01 0 0.6....0.150.350.4 0.26] 13
N N g: dot product
peace process in the Middle East Middle East peace processes current status

Aggregating Continuous Word Embeddings for Information Retrieval, S. Clinching et. al. 2013 ACL.



Composition: The Fisher Kernel Framework

< T
— A
_ GMM - O
- i A
6o _— ] i
(® & & v e ® o o w
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The word embeddings are assumed to be generated from the

Gaussian mixture model(GMM) ,

The Fisher Kernel framework: K(X.Y) = GX FTIGY = GX LAL\GX F/ISher Vector

» Gx :The gradient vector describes how different model parameters
contribute to the process of generating the example.

» L. :The low-rank approximation of the Fisher Information matrix

Aggregating Continuous Word Embeddings for Information Retrieval, S. Clinching et. al. 2013 ACL.



Composition: The Fisher Kernel Framework

* Learning phase:
1. Learn an embedding of words in a low-dimensional space
> W — Ew = [Ew,la .o aEw,e]-
2. Fit a probabilistic model
» A mixture model on the word embeddings

* Document representation:
1. Transfer the BoW representation into a BoWE

» {wi,...,wr} = {Ew,, ..., By}
2. Aggregate the continuous word embeddings E,, using
the FK framework

Aggregating Continuous Word Embeddings for Information Retrieval, S. Clinching et. al. 2013 ACL.



Composition: The Fisher Kernel Framework

Collection | Model | ARI | NMI

PLSA | 41.0 | 574 Collection | PL2 | TFIDF| FV | LSI
JoNG | LDA | 407|579 CLEF03 |357]| 164 [ 237192
1-;@1 j;g 2(9)3 TREC-1&2 | 226 | 124 | 108 | 65
R Ry ROBUST | 248 | 126 | 10545

LDA | 694 | 86.4

DT
11;%1 ;3; 22; Table 4: Mean Average Precision(%) for the PL.2
- - and TFIDF model on the three IR Collections
Table 2: Clustering experiments on 20NG and the compared to Fisher Vector and LSI
WebKB TDT Corpus: Mean performance over 20
runs (in %).

* FV performs better than the other latent models on
document clustering and ad-hoc retrieval.

 There is a significant gap between FV and state-of-the-art
IR models.

Aggregating Continuous Word Embeddings for Information Retrieval, S. Clinching et. al. 2013 ACL.



Composition: Dual Embedding Space Model

* Two sets of embeddings are . xm ouT
trained (W, and W ;)

* But W, is generally
discarded

ouT
Ct-2
* IN-OUT dot product captures N
.
log prob. of co-occurrence )
Wi | —
Ci+1
Cit



Composition: Dual Embedding Space Model

One-hot embedding idf
[0.1 0.3 0.03 0 0.4...0.050.02] | 4.8
[0.2 0.13 0.03 0 0... 0.070.01] 1.2
[0.13 0.3 0.3 0 0.2...0.080.02] 1.4
[0.3 0.4 0.09 0 0.3...0.050.14] 1.6

Bag-of-word-embedding Representation

1

peace process in the Middle East

£ sur

‘ - i | i
D: - £
| D| 2 ;]

d;eD

[2.62.55.205143.1....

£, pESMIC. D)= |Q|Z||q i

One-hot embedding idf
[0.4 0.3 0.45 0 0.3....0.090.01] |1.2
[0.2 0.1 0.03 0 0.1...0.180.02] 1.3

0.90.721.2]

f2 : average sum
g . cosine

Bag-of-word-embedding Representation

+

As for the Arabian and Palestinean voices that are against
the current negotiations and the so-called peace process,
they are not against peace per se, but rather for their well-
founded predictions that Israel would NOT give an inch of
the West bank (and most probably the same for Golan
Heights) back to the Arabs. An 18 months of "negotiations”
in Madrid, and Washington proved these predictions. Now
many will jump on me saying why are you blaming israclis
for no-result negotiations. I would say why would the
Arabs stall the negotiations, what do they have to loose ?

A Dual Embedding Space Model for Document Ranking, B. Mitra et. al. 2016 WWW.



Composition: Dual Embedding Space Model

* In-In(or Out-Out) cosine similarities are higher for words that
are typically(by type or by function) similar.

* In-Out cosine similarities are higher for words that co-occur
often in the train corpus(topically similar).

Input layer

Ct-2

Ct-1

Ct+1

Ct+2

Output layer

Avg sum

ﬁ Wt

yale seahawks eminem
IN-IN IN-OUT IN-IN IN-OUT IN-IN IN-OUT
yale yale seahawks seahawks eminem eminem
harvard faculty 49%ers highlights rihanna rap
nyu alumni broncos jerseys ludacris featuring
cornell orientation packers tshirts kanye tracklist
tulane haven nfl seattle beyonce diss
tufts graduate steelers hats 2pac performs
Explicitly Judged Test Set
NDCG@l NDCG@3 NDCG@10
BM25 21.44 26.09 37.53
LSA 04.61% 04.63* 04.83*
DESM (IN-IN, trained on body text) 06.69* 06.80* 07.39*
DESM (IN-IN, trained on queries) 05.56* 05.59* 06.03*
DESM (IN-OUT, trained on body text) 01.01* 01.16* 01.58*
DESM (IN-OUT, trained on queries) 00.62* 00.58* 00.81*
BM25 + DESM (IN-IN, trained on body text) 21.53 26.16 37.48
BM25 + DESM (IN-IN, trained on queries) 21.58 26.20 37.62
BM25 + DESM (IN-OUT, trained on body text) 21.47 26.18 37.55
| BM25 + DESM (IN-OUT, trained on queries) 21.54 26.42* 37.86*

A Dual Embedding Space Model for Document Ranking, B. Mitra et. al. 2016 WWW.



Direct Comparison: Comparing short texts

* Weighted semantic network

» Related to word alignment QO

» Each word in longer text is connected to its

most similar O o O

» BM25-like edge weighting

®
* Generates features for supervised Q O
learning of short text similarity

f.sts(slgs.s) =
_ /
S IDF(w)- sem(w, ss) - (k1 + 1) — sem(w, s) = max fsem (w,w").
sem(w, ss) +k1-(1—b+0b- 22)

avgsl

fsem(W, W) returns semantic match score from word embedding

Kenter and de Rijke. Short text similarity with word embeddings. CIKM 2015



https://staff.fnwi.uva.nl/m.derijke/wp-content/papercite-data/pdf/kenter-short-2015.pdf

Direct Comparison: Comparing short texts

Baseline Acc. p r F1
methods

Convolutional NNs .699 .809
VSM .710 .710 954 814
Corpus-based PMI 726 747 .891 .813
Our method Features Acc. p r F1
OoB Unwghtd 746 .768 .882 .822
OoB Unwghtd+swsn 0.751 .768 .896 .827
OoB+aux w2v Unwghtd+swsn  .757 775 .894 .830
OoB+aux Glv Unwghtd+swsn  .758 771 907 .833
OoB+both aux Unwghtd+swsn  .766 .781 .906 .839

OoB:

Aux:
W2v:

Glv:
Unwghtd:

Swsn:

Out-of-the-box vectors

Auxiliary vectors

Word2vec

Glove

Unweighted semantic feature

Saliency-weighted semantic feature

Kenter and de Rijke. Short text similarity with word embeddings. CIKM 2015



https://staff.fnwi.uva.nl/m.derijke/wp-content/papercite-data/pdf/kenter-short-2015.pdf

Direct Comparison: Word Mover’s Distance

document 1

Obama
speaks
to
the
media
in
Ilinois

3

‘greets’ document 2
hr v o« The D; |Obamajspeaks|to the media]in[Illinois
p ® , ‘speaks’ President iL k] &
resident greets 1.07 = 0.45\\ + 0.2N + 0.20 + 0.18&
the
Chicago’ ‘media’ press Dy The President greets the press in Chicago.

mn

“lllin.:is’ ‘pr.e;’_'. Chicago 11.63 =0.49 ﬁ+0.42 f +0.4% + 0.28 f

word2vec embedding

Minimize cost:

re

min T;;c(i.j) c(i,j) = ||x; — x

T >0
= =1

subject to: ZTU =d; Vie{l,...,n}

J=1

ZTU =d, Vje{l,...,n}.
i=1

Dy The band|gave|aconcert|in Japan.|

Dg The President greets the press in Chicago.

A

|Obama|speaks|in|Illinois.,

Measure the dissimilarity between two text documents
as the minimum amount of distance that the embedded
words of one document need to “travel” to reach the
embedded words of another document

Kusner, Sun, Kolkin and Weinberger. From Word Embeddings To Document Distances. ICML 2015
See also: Huang, Guo, Kusner, Sun, Weinberger and Sha. Supervised Word Mover’s Distance. NIPS 2016



http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf
https://papers.nips.cc/paper/6139-supervised-word-movers-distance.pdf

Direct Comparison: Word Mover’s Distance

* Reducing Computation Complexity
Word centroid distance (WCD) Relaxed word moving distance (RWMD)

Z TijC(’.aj) = E F,'J'HXI _in”2 min Z TUC(lv./)

Pj—1 ij—1 T>0 &

n n Ij=1
= 1Tl —xl2 = 1) Tilxi — %))l i

ij=1 ' i j=1 ' subject to : Z Tij=d Viel, ..,n

n n n n ‘ j:1
=X O Tixi— > O Tpxle . o

=1 =1 P T _ d; ifj= arg mlnjc(/,J)

J 0 otherwise

= 1> dixi— > _dixi|o = |1 Xd — Xd'[|
i—1 =1

Kusner, Sun, Kolkin and Weinberger. From Word Embeddings To Document Distances. ICML 2015
See also: Huang, Guo, Kusner, Sun, Weinberger and Sha. Supervised Word Mover’s Distance. NIPS 2016



http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf
https://papers.nips.cc/paper/6139-supervised-word-movers-distance.pdf

Direct Comparison: Word Mover’s Distance

1.6 " 1.6 :
14 twitter 1.4/ amMmazon ] WCD <= RWMD <= WMD
GRT—— WCD: Word centroid distance
: ;Z * wens|  RWMD: Relaxed WMD
= ) = WMD
B

Prefetch and prune algorithm:

e Sort by WCD

*  Compute WMD on top-k

* Continue, using RWMD to
prune 95% of WMD

0 . : . .
0 200 400 600 800 1000 00 500 1000 1500 2000 2500
training input index training input index

Figure 6. The WCD, RWMD, and WMD distances (sorted by
WMD) for a random test query document.

Kusner, Sun, Kolkin and Weinberger. From Word Embeddings To Document Distances. ICML 2015
See also: Huang, Guo, Kusner, Sun, Weinberger and Sha. Supervised Word Mover’s Distance. NIPS 2016



http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf
https://papers.nips.cc/paper/6139-supervised-word-movers-distance.pdf

Direct Comparison: Non-linear Word Transportation

Document Query Matching Profit
—4 Apple ——
Apple Watch price, where to buy, releasg_h }] I —
date and specs ——— E—_:_—__ T
Updated All yoU Ti2=c-to_know about AppTEs debut_ T = watch —
smartwatch — T ~—
By Carly Page _____.---"“'F'_'--.._. oo T
s —— ] — B
THE APPLE WATCH has arrived,-and-hes-sirendy-repartedty ——— —F rEIease
made Its mark on the smartwatch market 11 | —— —— __
While the Apple Watch was in short demand at Iaunr.h,_ﬂr_ilhr?s___ — . _
predict that the wearable claimed 75 percent of smartwatch sales - 1__| me ————
n the second quarter, while rival Samsung bagged just 7.5
percent of the market. Apple has yet to reveal official axact salas
figuras
L.
b
Information Supplier Information Consumer

- Matchingin IR as a transportation problem

» The information gain of transporting (i.e., matching) a document
word to a query word decides the transportation “profit”;

» The total profit over all the query words defines the relevance
between a document and a query;

Semantic Matching by Non-Linear Word Transportation for Information Retrieval, J.F. Guo et. al. 2016 CIKM.



Direct Comparison: Non-linear Word Transportation

Semantic Matching as Non-Linear Word Transportation

> Given a query and a document with BOWE representations, one aims
to find a set of optimal flows F = {f;} that satisfy

max z logE fumi

jeQ  ieD
subjectto:  fij =0 Vie D,VjEQ
Zfl] = (i Vi eD
jeqQ

» No capacity constraint on query side: unlimited capacity to
accommodate as much relevant information as possible from the

document
» Non-linear objective function: models diminishing marginal returns on

the matching profits

Semantic Matching by Non-Linear Word Transportation for Information Retrieval, J.F. Guo et. al. 2016 CIKM.



Direct Comparison: Non-linear Word Transportation

e PIV (vector space model)

1+ In(L+ In(c(w, d)))| N +1

c(w,q)-In

wegqnd (1_ S) + Sm df (W)
avdl

DIR (language modeling approach)

Do cwd) | s
2 S a

BM25 (classic probabilistic model)

é InN_df(W)+0'5 (k,+1) " c(w,d) X(k3+1)'c(w,q)
WwTqCd df (w)+0.5

Hapiness

kl((l‘b)"'blddll)+c(w,d) ky+c(w,q)

~ — — —
05 / — (x from 0 to 10)
| L
b, —
f ' — logilogix))
f #.f 2 4 & 8 10
-05fF )
P = log(x)

—10f
:I

—1.5%

a1
Computed by Wolfram [Alpha



Efficient Solution

Efficient pruning and indexing strategy

Doc Query Doc Query

@0

KNN Pruning

@
|V| doc nodes, |Q| query nodes, ~|V|*|Q| edges ~K*|Q| doc nodes, |Q| query nodes, ~K*|Q|? edges
Original problem Top-K pruning

Directly solved by convex optimization approaches



Direct Comparison: Non-linear Word Transportation

Robust-04 collection

Topic titles Topic descriptions

Model Type Model Name  MAP nDCGQ20 P@20 MAP nDCG@20 P@20
Excact Matchine QL 0.253~ L:l.41'3_ 0.369~ 02—16_ 0.391— 0.334—
Baselines ° BM25 0.2557 L_l.418 0.370 L_l.241_ 0.399— 0.337—

SDM 0.263 0.423 0.375 0.261 0.409 0.349

RM3 0.295T  0.423 0.375 0.264 0.387~ 0.345
Semantic Matching LM+LDA 0.258—  0.421 0.374 0.247— 0.392— 0.336—
Baselines LM+WE-VS  0.255— 0417~ 0.370~ 0.253—  0.401— 0.341—
WE-GLM 0.255—  0.417 0.371 0.252=  0.400~ 0.340~

Our Approach NWT 0.274  0.426 0.330 0.268  0.413 0.353

Significant improvement or degradation with respect to NWT is indicated (+/-) (p-value<0:05)

NWT can significantly outperform basic exact matching baselines;

NWT even performs better than the state-of-the-art n-gram based
model SDM;

NWT can significantly outperform existing latent models and word
embedding based models;

NWT’s performance is comparable with PRF methods;

Semantic Matching by Non-Linear Word Transportation for Information Retrieval, J.F. Guo et. al. 2016 CIKM.



Direct Comparison: Adapting PV-DBOW for IR

Query: food drug law

g (_food J=———> P(q1|d) = APpy (q1]d) + (1 = \) Pras(q:1|d)

Document ﬁ

* Improper noise distribution: Negative sampling using IDF instead of
corpus frequency

e Overfitting on short documents: L2 regularization constraint on the
norm

* Insufficient modeling for word substitution: Predicting context words

Ai, Yang, Guo and Croft. Analysis of the Paragraph Vector Model for Information Retrieval. ICTIR 2016



http://dl.acm.org/citation.cfm?id=2970409

Direct Comparison: Adapting PV-DBOW for IR

Table 2: Comparison of different models over Robusto4 and GOV2 collection. *, + means significant difference over
QL, LDA-LM respectively at 0.05 significance level measured by Fisher randomization test. The best performance is
highlighted in boldface.

Robust04 collection

Topic titles H Topic descriptions
Method | MAP | nDCG@20 | P@20 || MAP | nDCG@20 | P@20
QL 0.253 0.415 0.369 0.246 0.391 0.334
LDA-LM 0.258* 0.421 0.374* 0.247 0.392 0.336
PV-LM 0.259* 0.418 0.371 0.247 0.392 0.335
EPV-R-LM 0.259* 0.418 0.370 0.247 0.393 0.336
EPV-DR-LM 0.262* 0.418 0.368 0.252*F | 0.397* 0.338*
EPV-DRJ-LM || 0.267*F | 0.425* 0.376* 0.253*T | 0.404*F 0.347*%

GOV2 collection

Topic titles H Topic descriptions
Method | MAP | nDCG@20 | P@20 || MAP | nDCG@20 | P@20
QL 0.295% 0.409 0.510% 0.249+ 0.371 0.470
LDA-LM 0.290 0.406 0.505 0.245 0.376 0.468
PV-LM 0.294 0.409 0.5107 0.246 0.364 0.463
EPV-R-LM 0.295F 0.410 0.511°F 0.250™ 0.368 0.467
EPV-DR-LM 0.2967F 0.412 0.512 0.250™ 0.371 0.470
EPV-DRJ-LM || 0.297+ | 0.415*+ 0.519** || 0.252*F | 0.371 0.472

All the strategies help improve the embedding based language model

Ai, Yang, Guo and Croft. Analysis of the Paragraph Vector Model for Information Retrieval. ICTIR 2016
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3. Query expansion

 Both passages have the same
number of guery matches.

* Yet non-query green matches
can be a good evidence of
aboutness.

* We need methods to consider
non-query terms. Traditionally:
automatic query expansion.

Query:

(s the most populous city in the U.S. state of New
Mexico. The high-altitude city serves as the county seat of
Bernalillo County, and it is situated in the central part of the
state, straddling the Rio Grande. The city population is 557,169
as of the July 1, 2014, population estimate from the United
States Census Bureau, and ranks as the 32nd-largest city in the
U.S. The Metropolitan Statistical Area (or MSA) has a population
of 902,797 according to the United States Census Bureau's most
recently available estimate for July 1, 2013.

(a)

Allen suggested that they could program a BASIC interpreter for
the device; after a call from Gates claiming to have a working
interpreter, MITS requested a demonstration. Since they didn't
actually have one, Allen worked on a simulator for the Altair
while Gates developed the interpreter. Although they developed
the interpreter on a simulator and not the actual device, the
interpreter worked flawlessly when they demonstrated the
interpreter to MITS in , New Mexico in March 1975;
MITS agreed to distribute it, marketing it as Altair BASIC.

(b)

Example from Mitra et al., 2016



https://arxiv.org/abs/1602.01137

Query expansion using w2v

* |dentify expansion terms using w2v cosine similarity

» 3 different strategies: pre-retrieval, post-retrieval, and
pre-retrieval incremental

Sim(w, Q)
ZweQemp Szm('w, Q)

P(w|Qewp) = aP(w|Q) + (1 - )

Sim(t, Q) = 1 Z t.q;

where Qexp is the set of top K terms from C, the set of candidate expansion
terms

Roy, Paul, Mitra and Garain. Using Word embeddings for automatic guery expansion. Neu-IR Workshop 2016
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Query expansion using w2v

* Performance

Query Method Parameters Metrics Query Method Parameters Metrics
K #fdbck-docs o MAP GMAP P@5 K #fdbck-docs a MAP GMAP P@5
LM - - - 0.2303 0.0875 0.3920 LM - - - 0.2651 0.1710 0.4424
Pre-ret - 100 0.55 0.2406* 0.1026 0.4000 Pre-ret - 90 0.65 0.2842* 0.1869 0.4949
TREC 6 Post-ret 30 110 0.6 0.2393 0.1028 0.4000 Robust Post-ret 30 100 0.6 0.2885* 0.1901 0.5010
Increm. - 90 0.55 0.2354 0.0991 0.4160 Increm. - 90 0.6 0.2956* 0.1972 0.5051
RM3 30 70 - 0.2634%.2.% 0.0957 0.4360 RM3 20 70 - 0.3304k:P 0.2177 0.4949
LM - - - 0.1750 0.0828 0.4080 LM - - - 0.1454 0.0566 0.2525
Pre-ret - 120 0.6 0.1806 0.0956 0.4000 Pre-ret - 80 0.6 0.1718%* 0.0745 0.2929
TREC 7 Post-ret 30 120 0.6 0.1806* 0.0956 0.4280 WTI10G Post-ret 30 90 0.6 0.1709* 0.0769 0.3071
Increm. - 70 0.55 0.1887* . 0.1026 0.4360 Increm. - 100 0.55 0.1724* 0.0785 0.3253
RM3 20 70 - 0.2151%:2%0.1038 0.4160 RM3 20 70 - 0.1915%:p+% 0.0782 0.3273
LM - - - 0.2373 0.1318 0.4320
Pre-ret - 120 0.65 0.2535* 0.1533 0.4680
TREC 8 Post-ret 30 90 0.65 0.2531* 0.1529 0.4600
Increm. - 120 0.65 0.2567* . 0.1560 0.4680
RM3 20 70 - 0.2701%7% 0.1543 0.4760

No significant difference between pre- and post- methods
Beats no expansion, but does not beat non-neural expansion

Roy, Paul, Mitra and Garain. Using Word embeddings for automatic guery expansion. Neu-IR Workshop 2016
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Query expansion using w2v

1. Embedding-based Query Expansion
e Conditional Independence of query term (multiplicative model)

_ 6) ) ; ) 3, W
p(w|bg) = P C;'E’;;SU(“) x p(Bg|w)p(w) p(gi|w) = Zw’e(jd(u')"f’w)

* Query-Independent Term similarities (mixture model)

c(w', Q)

/ ! )
pwlfe) = 3 plw.w'lfe) = 3 plulu’.fe)p(n'|fe) Pwlda) o D s~ =50 o

w!'eV w eV w' eQ

 Distance 6 has a sigmoid transform to keep a small similar list

2. Embedding-based Relevance Model
p(wlor) o Y p(w,Q, D) = > p(Qlw, D)p(w|D)p(D))

DeF DEF
p(Q|lw, D) = B pim(Q|w, D) + (1 — ) psem(Q|w, D)

psem(Q|1U,D Hpsem qz|w D) = H (Qz, w)Zc(q'L,D)

=1

Q|

Zamani and Croft. Embedding-based query language models. International Conference on the Theory of Information Retrieval 2016

Lavrenko and Croft. Relevance based language models. SIGIR 2001
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Query expansion using w2v

e performance

Dataset | Metric | MLE M{E{?&l\“ EQE1+RM1 | EQE2+RM1 || MLE+ERM | EQE1+ERM | EQE2+ERM
MAP | 0.2236 | 0.3051 0.3118"2 0.311512 0.3102T2 0.3178"2 0.3140™2
AP P@5 | 0.4260 | 0.4644 0.4808 0.4795 0.4699 0.4822 0.4644
’ P@10 | 0.4014 | 0.4500 0.4500 0.4452 0.4521 0.4568 0.4479
RI . 0.47 0.45 0.41 0.52 0.47 0.52
MAP | 0.2190 | 0.2677 0.2712% 0.2710* 0.2711° 0.2731% 0.2750'°
Robust | P95 | 0.4606 | 0.4581 0.4747 0.4722 0.4639 0.4797 0.4730
- P@10 | 0.3979 | 0.4191 0.4241 0.4295 0.4241 0.4307 0.4369
RI . 0.31 0.39 0.35 0.31 0.32 0.36
MAP | 0.2696 | 0.2938 0.298712 0.29221 0.3005%2 0.3012%2 0.29571
COVo P@s | 0.5592 | 0.5592 0.5687 0.5673 0.5823 0.5850 0.5782
| P@10 | 0.5531 | 0.5599 0.5816 0.5714 0.5830 0.5844 0.5782
RI - 0.15 0.22 0.14 0.22 0.20 0.20

Can beat non-neural expansion
Multiplicative better than mixture

Zamani and Croft. Embedding-based query language models. International Conference on the Theory of Information Retrieval 2016
Lavrenko and Croft. Relevance based language models. SIGIR 2001
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Optimizing the query vector

* Estimating query embedding vectors:
» The objective function (optimize towards QL)

q* = arg max > p(wlfy) log p(wlq)
weV

arg max > p(wl|by) log (0, )

weV

» Evaluation via Query Expansion
p(w|0y) = & pmic(w|fy) + (1 — ) p(w]q)

e /

MLE of original query Query embedding
based expansion

Zamani and Croft. Estimating embedding vectors for queries. International Conference on the Theory of Information Retrieval 2016
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Optimizing the query vector

e performance

Collection | Metric QL ML?X\%OE}?H&X MLE+Sigmoid | PQV+Softmax | PQV+Sigmoid
MAP | 0.2236 0.2470° 0.2486" 0.2695"1% 0.2717°1
AP P@5 | 0.4260 0.4452° 0.4507° 0.4493° 0.4548°!

P@10 | 0.4014 0.4260° 0.4274° 0.4226° 0.4233°
MAP | 0.2190 0.2299° 0.2303° 0.2355%12 0.2364°"2

Robust P@5 | 0.4606 0.4730° 0.4714° 0.4564 0.4591
P@10 | 0.3979 0.4237° 0.4245° 0.4083° 0.4141°
MAP | 0.2696 0.2719 0.2727 0.2771%12 0.2798°12

GOV2 P@5 | 0.5592 0.5837° 0.5864° 0.5755° 0.5864°
P@10 | 0.5531 0.5653° 0.5721% 0.5694° 0.5721%

Pseudo relevance feedback based estimation + sigmoid
similarity function work best

Zamani and Croft. Estimating embedding vectors for queries. International Conference on the Theory of Information Retrieval 2016
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Global vs. local embedding spaces

global local
cutting tax
squeeze deficit
reduce vote
slash budget
reduction reduction
spend house
lower bill
halve plan
soften spend
freeze billion

Figure 3: Terms similar to ‘cut’ for a word2vec
model trained on a general news corpus and
another trained only on documents related to
‘gasoline tax’.

* Train w2v on
documents from first
round of retrieval

* Fine-grained word
sense disambiguation

* Alarge number of
embedding spaces can
be cached in practice

Figure 5: Global versus local embedding of
highly relevant terms. Each point represents a
candidate expansion term. Red points have
high frequency in the relevant set of docu-
ments. White points have low or no frequency
in the relevant set of documents. The blue
point represents the query. Contours indicate
distance from the query.

Fernando Diaz at al. Query Expansion with Locally-Trained Word Embeddings. ACL 2016



Global vs. local embedding spaces

e Retrieval results of query expansion based on
global and local embeddings.

global local
wiki+giga gnews target | target  giga wiki
QL 50 100 200 300 300 400 400 400 400

trec12 0.514 | 0.518 0.518 0.530 0.531 0.530 0.545 | 0.535 0.563"  0.523
robust 0.467 | 0.470 0.463 0.469 0.468 0.472 0.465 | 0.475 0.517° 0.476
web 0.216 | 0.227 0.229 0.230 0.232 0.218 0216 | 0.234 0.236 0.258"

Local embeddings significantly outperform global
embeddings for query expansion.

Fernando Diaz at al. Query Expansion with Locally-Trained Word Embeddings. ACL 2016



Word Embedding Approaches to IR

Ad-hoc Retrieval

Bug Localization
Contextual Suggestion
Cross-lingual IR
Detecting Text Reuse

Domain-specific
Semantic Similarity

Community Question Answering
Short Text Similarity
Outlier Detection

Sponsored Search

ALMasri et al. (2016), Amer et al. (2016), Clinchant and Perronnin
(2013), Diaz et al. (2016), GLM (Ganguly et al. (2015)), Mitra et al.
(2016), Nalisnick et al. (2016), NLTM (Zuccon et al. (2015)),
Rekabsaz et al. (2016), Roy et al. (2016), Zamani and Croft (2016a),
Zamani and Croft (2016b), Guo et al. (2016), Zheng and Callan
(2015)

Ye et al. (2016)

Manotumruksa et al. (2016)
BWESG (Vulic and Moens (2015))
Zhang et al. (2014)

De Vine et al. (2014)

Zhou et al. (2015)

Kenter and de Rijke (2015)

ParagraphVector (Le and Mikolov (2014))
Grbovic et al. (2015b), (Grbovic et al., 2015a)



Summarization

Word embeddings can be useful for inexact matching

Embedding based models often perform poorly when
applied in isolation, and should be combined with exact
matching models (or use telescoping setting).

These methods seem promising if:
» High-quality embeddings/domain-specific embeddings available
» No large-scale supervised IR data available

If large-scale supervised IR data is available ... (after the
break)
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