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Success stories of deep neural models

Object Recognition
Speech Recognition Machine Translation

Image Captioning

The ImageNet ILSVRC challenge consists of 

1.2 million images associated with 1’000 

categories.

http://www.image-net.org/challenges/LSVRC/


Success stories of deep neural models

Painting

Driving

Playing games
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Deep Learning for IR

SIGIR papers with title words: Neural, 

Embedding, Convolution, Recurrent, LSTM
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(accepted)
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(accepted)

Neural network papers @ 
SIGIR

Dominating multiple fields:

Christopher Manning. Understanding 

Human Language: Can NLP and Deep 

Learning Help? Keynote SIGIR 2016

Figure from Mitra & Craswell Tutorial @WSDM 2017

http://nlp.stanford.edu/manning/talks/SIGIR2016-Deep-Learning-NLI.pdf


Neural Models for IR

This tutorial mainly focuses on:

• Retrieval of short/long texts, given a text query

• Representation learning

• Shallow and deep neural networks

For broader topics (multimedia, knowledge) see:
Craswell, Croft, Guo, Mitra, and de Rijke. Neu-IR: Workshop on Neural 
Information Retrieval. SIGIR 2016/SIGIR 2017 workshop

This presentation includes content from WSDM 2017 tutorial “Neural Text 
Embeddings for Information Retrieval” by Mitra and Craswell 

http://sigir.org/wp-content/uploads/2017/01/p096.pdf
https://www.slideshare.net/BhaskarMitra3/neural-text-embeddings-for-information-retrieval-wsdm-2017


Today’s Agenda

Part I

• Fundamentals of IR

• Word Representations

• Word Representations for IR

Part II

• Supervised learning for rank

• Deep neural nets

• Deep neural nets for IR



Chapter 1

Fundamentals of IR



Information retrieval (IR) terminology

Information retrieval (IR) is the activity of obtaining information 
resources relevant to an information need from a collection of 
information resources.

-- Wikipedia

results ranking 
(document list)

Database: indexed
documents

Relevance
(documents satisfy 
information need)

Information Resources
query

Deep Learning

Information 
need



IR Applications

Ad-hoc retrieval Question Answering

Query Keywords Natural language question

Document Web page, news article Supporting passage, entities, facts

TREC experiments TREC ad hoc TREC question answering

Evaluation metric Average precision, NDCG Mean reciprocal rank

Research solution Modern TREC rankers
BM25, query expansion, learning to rank, 
links, clicks

IBM@TREC-QA
Answer type detection, passage retrieval, relation 
retrieval, answer processing and ranking

In products Web search systems: Google, 
Bing, Baidu, Yandex, …

Watson@Jeopardy

This tutorial Long text ranking Short text ranking

Other applications:
• CQA: Similar/related question retrieval
• Conversation: Retrieval response given a sentence



History of IR
• 1950-1960: early days and first empirical observations

➢ Hypothesis on automated indexing (Luhn)

➢ First experiments and development of guidelines for information retrieval systems
evaluation (Cleverdon’s Cranfield 1 and Cranfield 2)

➢ Early experiments of a Vector Space Model for ranking (Salton’s SMART)

• 1970-1980: active development of information retrieval
➢ Establishment of a Vector Space Model for ranking

➢ Ranking models based on probability ranking principles (PRP)

• 1990s: further development and formalization of IR (new applications
and theoretical explanations)
➢ Statistical Language Models (Croft’ 98)

➢ Development of large scale collections for IR system evaluation (TREC)

• 2000s: web search, large scale search engine in the wild, anti-spam
➢ Machine Learning to Rank

➢ MapReduce, GFS, Hadoop …

• 2010s: entity search, social search, real-time search



Challenges in (neural) IR [1/4]

• Vocabulary mismatch

Q: How many people live in Sydney?

➢ Sydney’s population is 4.9 million
[relevant, but missing ‘people’ and ‘live’]

➢ Hundreds of people queueing for live music in Sydney
[irrelevant, and matching ‘people’ and ‘live’]

• Robustness to rare inputs

➢ More than 70% of the distinct query are seen only once

➢ Q: “pekarovic land company” 

Vocab mismatch:
• Worse for short texts
• Still an issue for long texts

Learning good representation of text is important for dealing with vocabulary 
mismatch, but exact matching is also important to deal with rare terms and intents.



Challenges in (neural) IR [2/4]

• Q and D vary in length

➢ Models must handle short (keyword) 
queries and long (verbose) queries

➢ Models must handle varied length 
documents

• Different hypothesis about long document [Roberson et al. 1994]

 Verbosity hypothesis : Long document covering a similar scope but with
more words.

 Scope hypothesis : long document consists of a number of unrelated
short documents concatenated together.

Figure from: AleAhmad, Abolfazl, et al. "Hamshahri: A 
standard Persian text collection." Knowledge-Based 
Systems 22.5 (2009): 382-387.

A good retrieval model should be able to handle and robust to varied length 
queries and documents



Challenges in (neural) IR [slide 3/4]

• Need to learn Q-D relationship that 
generalizes to the tail

➢ Unseen Q

➢ Unseen D

➢ Unseen information needs

➢ Unseen vocabulary

• Robustness to corpus variance

➢ Simple model vs. deep models

➢ “Out of box” performance

➢ Overfitting

Figure from: Goel, Broder, Gabrilovich, and Pang. 

Anatomy of the long tail: ordinary people with 

extraordinary tastes. WWW Conference 2010

A good retrieval model should be able to capture the essential relevance patterns 
between query and document, and generalize well on unseen data

http://www.cs.technion.ac.il/~gabr/publications/papers/Goel2010ALT.pdf


Challenges in (neural) IR [4/4]

• Need to interpret words based on context (e.g., temporal)

Today Recent In older (1990s) TREC data

query:
“United States president”

• Efficient retrieval over many documents
➢ Inverted files, KD-Tree, LSH, …

• Robustness to errors in input
➢ Traditional IR models: specific components for error corrections
➢ Neural IR models: character-level operation and/or representation 

learning from noisy data



Popular IR Metrics
IR metrics focus on rank-based comparison of the retrieved result set R to an 
ideal ranking of documents, as determined by manual judgments or implicit 
feedback from user behavior data.

1. Precision and recall

2. Mean reciprocal rank (MRR)

3. Mean average precision (MAP)

4. Normalized discount cumulative gain (NDCG)



Traditional IR Models

1. Boolean models (Lancaster et al., 1973):
➢ Simple model based on set theory
➢ Queries specified as boolean expressions

2. Vector Space models (Salton et al., 1983):
➢ Unique terms that form the VOCABULARY

➢ These “orthogonal” terms form a vector space.

3. Probabilistic models:
➢ BM25 (Robertson et al., 1994)
➢ Language model (Croft et al., 1998)
➢ Translation models (Berger and Lafferty, 1999)
➢ Dependence model (Metzler and Croft, 2005)

4. Pseudo relevance feedback (Lavrenko, 2008, Lavrenko and Croft, 
2001)
➢ Execute an additional round of retrieval



Learning to Rank
1995 1998 2001 2002 2003 2005 2006 2007 2008 2009 2010 2011 2012 2017

Univ. of 
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New York Univ.
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Hebrew Univ. Pranking RankBoost

Cornell Univ. RankSVM SVMMAP

Columbia Univ. RankBoost

Univ. of Toronto BoltzRank

Northeastern 
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Doc 
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Princeton Univ. RankBoost

Nottingham 
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ES-Rank
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Yahoo!
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Microsoft RankNet
LambdaR
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Neural Approaches to IR
• Related document search: 

➢ semantic hashing, Salakhutdinov and Hinton (2009)…

• Ad-hoc search: 
➢ Word Representation based models

▪ FV, Clinchant, S. and Perronnin, F. (2013),

▪ QLM, Sordoni et al. (2014); 

▪ NWT, Guo et al. (2016)

➢ Neural network based models

▪ Title/Snippet-based search, DSSM, Huang et al. (2013); …

▪ Different Granularity search: Cohen et al. (2016); 

▪ Full document search: DRMM, Guo et al. (2016).

• Wider adoption in IR from 2015: 
➢ QA/CQA, query completion, query suggestion, sponsored search



Chapter 2

Word Representations



Local Representation of Words

One-Hot Representation

man [1,0,...,0,0,...,0,0]

woman [0,1,...,0,0,...,0,0]

dog [0,0,...,1,0,...,0,0]

computer [0,0,...,0,0,...,1,0]

Man Woman Dog Computer

man

• Words are the building blocks of texts
• Traditional IR often treats words as atomic symbols:

• also known as “one-hot” or local representation 

• local representation: each word is locally represented 
by a distinct node.



Limitations of Local Representations

Local Representation

man [1,0,...,0,0,...,0,0]

woman [0,1,...,0,0,...,0,0]

car [0,0,...,1,0,...,0,0]

automobile [0,0,...,0,0,...,1,0]

man

cos(car, automobile) =  0!

• Local representation makes a strong independent 
assumption between words

• Local representation is not efficient
➢ require N nodes to represent N words



Limitations of Local Representations

• There are three teams left for the qualification. 

• four teams have passed the first round. 

• four groups are playing in the field.

Training corpus:

Assign a probability to an unseen bigram “three groups”:

p(groups|three) = 0! No generalization

• Local representations are arbitrary, and cannot 
generalize between words
➢ The model can leverage very little of what it has learned 

about “groups” when it is processing data about “teams”



– Geoffrey E. Hinton

“The first thing you do with a word symbol is you 
convert it to a word vector. And you learn to do 
that, you learn for each word how to turn a 
symbol into a vector, say, 300 components, and 
after you’ve done learning, you’ll discover the 
vector for Tuesday is very similar to the vector for 
Wednesday.” 

Deep Learning. 
Royal Society keynote

recorded May 22, 2015



Distributed Representation of Words

• Vector space models (VSM) represent (embed) words in a 
continuous vector space

• also known as distributed representations1: all the words 
share all the nodes 

Vector Space Representation

man [0.326172, . . . , 0.00524902, . . . , 0.0209961]

woman [0.243164, . . . , −0.205078, . . . , −0.0294189]

car [0.0512695, . . . , −0.306641, . . . , 0.222656]

automobile [0.107422, . . . , −0.0375977, . . . , −0.0620117]

Vectors from GoogleNews-vectors-negative300.bin

man

Hinton, G. E., et al. Distributed representations. In Rumelhart, D. E., McClelland, J. L., and PDP Research Group, C., editors, Parallel 
Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1,1986, pages 77–109. MIT Press, Cambridge, MA, USA.



Pros of Distributed Representations

Distributed Representation

man [0.326172, . . . , 0.00524902, . . . , 0.0209961]

woman [0.243164, . . . , −0.205078, . . . , −0.0294189]

car [0.0512695, . . . , −0.306641, . . . , 0.222656]

automobile [0.107422, . . . , −0.0375977, . . . , −0.0620117]

cos(man, women) = 0.77

cos(man, automobile) = 0.25

• Distributed representations

➢ Semantically similar words are mapped to nearby points



Pros of Distributed Representations

What words have embeddings closest to a given word?
From Collobert et al. (2011)



The Brain Dictionary

Huth, A.G., de Heer, W.A., Griffiths, T.L., Theunissen, F.E., Gallant, J.L., 2016. Natural speech reveals the 
semantic maps that tile human cerebral cortex. Nature 532, 453–458. doi:10.1038/nature17637



Pros of Distributed Representation

From Tomas Mikolov et al. 
Efficient estimation of word 
representations in vector 
space. In Proceedings of 
Workshop of ICLR, 2013.



Pros of Distributed Representation

• Distributed representation is efficient

➢ N nodes can represent 2N words (binary case)



Pros of Distributed Representation

• There are three teams left for the qualification. 

• four teams have passed the first round. 

• four groups are playing in the field.

Training corpus:

th re e

fo u r

te a m s

g ro u p s

(a) (b)

Figure 5.3: (a) Schem atics of neural language m odel. (b) E xam ple of how neural
language m odelgeneralizes to an unseen n-gram .

L et us look m ore closely at w hat g does in E q. (5.14). If w e ignore the effect of
the bias ck for now , w e can clearly see that the probability of the k-th w ord in the
vocabulary is large w hen the outputvector u k (or the k-th row of the outputm atrix U )
is w ell aligned w ith the context vector h. In other w ords, the probability of the next
w ord being the k-th w ord in the vocabulary is roughly proportionalto the innerproduct
betw een the contextvector h and the corresponding targetw ord vector u k.
N ow letus consider tw o contextvectors h j and h k.T hese contexts are follow ed by

a sim ilar setof w ords,m eaning thatthe conditional distributions of the nextw ord are
sim ilarto each other.A lthough these distributions are defined overallpossibility target
w ords,letus look atthe probabilities of only one of the targetw ords w l:

plj = p(w l|h j) =
1

Z j
exp
⇣
w >l h j

⌘
,

plk = p(w l|h k) =
1

Z k
exp
⇣
w >l h k

⌘
.

T he ratio betw een plj and p
l
k is then

16

plj
plk
=
Z k
Z j
exp
⇣
w >l (h j− h k)

⌘
.

From this,w e can clearly see thatin order for the ratio
plj
plk
to be 1,i.e., plj = p

l
k,

w >l (h j− h k) = 0. (5.15)

16 N ote thatboth plj and p
l
k are positive due to our use of softm ax.

69

Assign a probability to an unseen bigram “three groups”:

p(teams|three) > 0                    p(groups|three) > 0

• Distributed representations can generalize between words
➢ Semantically similar words are mapped to nearby points

• Generalization ability: language model using distributed 
word representation can assign a reasonable probability



“The gains so far have not so much been from true 
Deep Learning (use of a hierarchy of more abstract 
representations to promote generalization) as from 
the use of distributed word representations—
through the use of real-valued vector 
representations of words. Having a dense, multi-
dimensional representation of similarity between 
all words is incredibly useful in NLP…”

– Christopher D. Manning

Computational Linguistics and Deep Learning. 

Computational Linguistics, 41(4):701–707, 2015. 



How to learn word representations? 

From Stefan Evert. Distributional Semantic Models . NAACL-HLT 2010 Tutorial

What is the meaning of 
“bardiwac ”?



Distributional Semantics in a Nutshell

glass drink grape red meal

bardiwac 10 22 43 16 29

wine 14 10 4 15 45

car 5 0 0 10 0



Distributional Hypothesis

“ Words that occur in the same contexts tend to have
similar meanings.”

-- Zellig Harris [Harris, 1954]

“ A word is characterized by the company it keeps.”
-- Firth, J. R. [Firth, 1957]



Distributed and distributional

Distributional methods use 
distributed representations

• Distributed representation: 
Vector represents a concept as a 
pattern, rather than 1-hot 

• Distributional semantics: 
Linguistic items with similar 
distributions (e.g. context words) have 
similar meanings

“You shall know a word by 
the company it keeps ”



Context is the key in distributional hypothesis.
What type of context you use decides what kind of meaning 

or semantic relations between words you obtain.

banana

nanana#ba na# ban

banana

(grows) (tree)(yellow) (on) (africa)

banana

Doc7 Doc9Doc2

banana

(grows, +1) (tree, +3)(yellow, -1) (on, +2) (africa, +5)

Word-Document

Word-Word

Word-WordDist

Word hash 
(not context-based)

D
is

tr
ib

u
ti

o
n

al
 

Se
m

an
ti

cs
Context is the key



Two tales of semantic relationships

• Syntagmatic (or topical) relations: concerning positioning, 
and relate words that co-occur in the same text region.

• Paradigmatic (or typical) relations: concerning substitution, 
and relate words that occur in the same context but not at 
the same time.

Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Linguistics, 20(1):33–54.
Fei Sun et al. Learning Word Representations by Jointly Modeling Syntagmatic and Paradigmatic Relations. In 
Proceedings  of ACL. 2015, 136–145



Syntagmatic Models

Distributional models with syntagmatic relations collect 
information about which context regions words occur 

d1 d2

Einstein 1 0

Feynman 0 1

physicist 1 1



Paradigmatic

Distributional models with paradigmatic relations collect 
information about which other words surround a word 

Einstein Feynman physicist

Einstein 0 0 1

Feynman 0 0 1

physicist 1 1 0



The refined distributional hypothesis: “A 
distributional model accumulated from co-

occurrence information contains syntagmatic 
relations between words, while a distributional 

model accumulated from information about 
shared neighbors contains paradigmatic 

relations between words.” 



Distributed Representation

• Explicit vector representations
➢ Vector space model based on raw counts of context features

➢ Highly sparse and high dimensional

• Embedding

➢ A representation of items in a new space such that the 
relationships between the items are preserved from the original 
representation

➢ A simpler representation

▪ A reduction in the number of dimensions

▪ An increase in the sparseness of the representation

▪ Disentangling the principle components of the vector space

▪ A combination of these goals



Word Embedding Models

Latent Semantic Indexing

PV-DBOW
BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

. . . . . .. . .

. . . . . .

. . . . . .

across words

most  computation here

index for index for index for

shared parameters

Matrix

in

look−up
Table

. . .

C

C

wt− 1wt− 2

C(wt− 2) C(wt− 1)C(wt− n+ 1)

wt− n+ 1

i-th output = P(wt = i |context)

Figure 1: Neural architecture: f (i,wt− 1,···,wt− n+ 1) = g(i,C(wt− 1),···,C(wt− n+ 1))where g is the

neural network and C(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥ m
matrixC whose row i is the feature vector C(i) for word i. The function g may be implemented by a

feed-forward or recurrent neural network or another parametrized function, with parameters w. The

overall parameter set is q = (C,w).
Training is achieved by looking for q that maximizes the training corpus penalized log-likelihood:

L =
1

T
å
t

log f (wt,wt− 1,···,wt− n+ 1;q)+ R(q),

where R(q) is a regularization term. For example, in our experiments, R is a weight decay penalty

applied only to the weights of the neural network and to the C matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of

words in the vocabulary. It also only scales linearly with the order n : the scaling factor could

be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural

network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features

mapping, and optionally, direct connections from the word features to the output. Therefore there

are really two hidden layers: the shared word features layer C, which has no non-linearity (it would

not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the

neural network computes the following function, with a softmax output layer, which guarantees

positive probabilities summing to 1:

P̂(wt|wt− 1,···wt− n+ 1) =
eywt

åi e
yi
.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Neural Probabilistic Language Model

PV-DM

HDC PDC

CBOW

Skip-gram

Syntagmatic relations

Paradigmatic relations

Joint relations



Discussion of word representations

• Distributed representation is learned based on 
distributional hypothesis
➢ Weighted counts, matrix factorization, neural embedding

• Choice of contexts affects semantics
➢ Syntagmatic vs Paradigmatic

• Efficiency (i.e. large data) weights more than complex 
model
➢ Scalability could be the key advantage of neural word 

embeddings



Chapter 3

Word Embeddings
for IR



Traditional IR Foundations

Retrieval based on local representations (BoW)

Bag-of-words Representation

Arabian 1

predictions 2

peace 2

negotiations 4

… …

peace 1

Process 1

Middle 1

East 1

Bag-of-words Representation

Syntactic 
Matching

peace process in the Middle East



When Word Embedding Comes…

One-hot embedding idf

[0.4  0.3  0.45  0  0.3 …. 0.09 0.24 0.7 0.01] 1.2

[0.2  0.1  0.03  0  0.1 …. 0.18 0.91 0.2 0.02] 1.3

[0.1  0.3  0.13  0  0.1 …. 0.16 0.25 0.8 0.03] 2.5

[0.3  0.5  0.11  0  0.2 …. 0.03 0.170.1  0.15] 5.2

[0.7  0.9  0.01  0  0.6 …. 0.15 0.35 0.4 0.26] 1.3

… …

One-hot embedding idf

[0.1  0.3  0.03  0  0.4 …. 0.05  0.12 0.02] 4.8

[0.2  0.13  0.03  0  0 ….  0.07 0.09  0.01] 1.2

[0.13  0.3  0.3  0  0.2 …. 0.08 0.87 0.02] 1.4

[0.3  0.4  0.09  0  0.3 …. 0.05 0.34 0.14] 1.6

Bag-of-word-embedding RepresentationBag-of-word-embedding Representation

peace process in the Middle East

Retrieval based on distributed representations (BoWE)

Semantic 
Matching



How to incorporate embeddings

1. Extend traditional IR models
➢ Term weighting, language model smoothing, translation 

of vocab

2. IR models that work in the embedding space
➢ Centroid distance, word mover’s distance

3. Expand query using embeddings (followed by non-
neural IR)
➢ Add words similar to the query



Traditional Term Weighting

• Inverse document frequency • Term frequency

• Adjust TF model for doc length

n

R
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r
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Term Frequency of t in D

D not about t

D is about t

Robertson and Sparck-Jones (1977) Harter (1975)

2-Poisson model of TF

RSJ naïve Bayes 
model of IDF

Rank D by: σ𝑡∈𝑄 𝑇𝐹 𝑡, 𝐷 ∗ 𝐼𝐷𝐹(𝑡)

Robertson and Zaragoza. The probabilistic relevance framework: BM25 and 
beyond. Foundations and Trends® in Information Retrieval 3, no. 4 (2009)

http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf


Term weighting using word embeddings

Zheng and Callan. Learning to reweight terms with distributed representations. SIGIR 2015

𝑦 =
𝑟

𝑅
(term recall)

• Fraction of positive docs with t

• The 𝑟 and 𝑅 were missing in 
RSJ

𝒙 = 𝒕 − ഥ𝒒
• 𝒕 is embedding of t

• ഥ𝒒 is centroid of all query terms

• Weight TF-IDF using ො𝑦

http://dl.acm.org/citation.cfm?id=2767700


Term weighting using word embeddings

Performance with language model:

DeepTR term weights perform better than the unweighted query model over all 
collections 
No clear winner among different vector resources



Traditional IR model: Query likelihood

d

document model

background model

A Word Embedding based Generalised Language Model for Information Retrieval,  D. Ganguly et. al. 2015 SIGIR.

Language modeling approach to IR is quite extensible

▪ Frequent words in 𝑑 are more likely (term frequency)
▪ Smoothing according to the corpus (plays the role of IDF)
▪ Various ways of dealing with document length normalization



Generalized Language Model

d

Noise Channel

A Word Embedding based Generalised Language Model for Information Retrieval,  D. Ganguly et. al. 2015 SIGIR.

document model

background model

Term transformation

Compares query term with 
every document term



Generalized Language Model

A Word Embedding based Generalised Language Model for Information Retrieval,  D. Ganguly et. al. 2015 SIGIR.



Neural Translation Model

Zuccon, Koopman, Bruza, and Azzopardi. "Integrating and evaluating neural word embeddings in information 
retrieval." Australasian Document Computing Symposium 2015

Translation probability from document 
term u to query term w

Considers all query-document 
term pairs

Based on: Berger and Lafferty. "Information retrieval as statistical translation." SIGIR 1999

http://dl.acm.org/citation.cfm?id=2838936
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.4262&rep=rep1&type=pdf


Neural Translation Model

Performance

NTLM models provided high quality translations while those of 
TLM-MI (Translation language model estimated by mutual 

information) led to poor estimations and consequently losses in 
retrieval effectiveness. 



IR models in the embedding space

• Q: Bag of word vectors

• D: Bag of word vectors

• How to deal with variable length of Q and D?

X

BoWE-1 BoWE-2

X
R1 R2

BoWE-1 BoWE-2

Composition Direct Comparison



Composition: Word Embedding-Vector Space

f1 :  sum
f2 :  weighted sum
g :   cosine

Monolingual and Cross-Lingual Information Retrieval Models Based on (Bilingual) Word Embeddings,  I. Vulic et. al. 2015 SIGIR.

Bag-of-word-embedding Representation

One-hot embedding idf

[0.4  0.3  0.45  0  0.3 …. 0.09 0.24 0.7 0.01] 1.2

[0.2  0.1  0.03  0  0.1 …. 0.18 0.91 0.2 0.02] 1.3

[0.1  0.3  0.13  0  0.1 …. 0.16 0.25 0.8 0.03] 2.5

… …

peace process in the Middle East

One-hot embedding idf

[0.1  0.3  0.03  0  0.4 …. 0.05  0.12 0.02] 4.8

[0.2  0.13  0.03  0  0 ….  0.07 0.09  0.01] 1.2

[0.13  0.3  0.3  0  0.2 …. 0.08 0.87 0.02] 1.4

[0.3  0.4  0.09  0  0.3 …. 0.05 0.34 0.14] 1.6

Bag-of-word-embedding Representation

WE-VS  score

[0.4  1.2 1.6  0.2 1.4  …. 0.7 1.2 4.8 1.5 ] [2.6 2.5  1.4 …. 0.9 0.72 1.2]

g

f1 f2



Composition: Word Embedding-Vector Space

Too coarse-
grained

compared to LM

Monolingual and Cross-Lingual Information Retrieval Models Based on (Bilingual) Word Embeddings,  I. Vulic et. al. 2015 SIGIR.



Composition: The Fisher Kernel Framework

Bag-of-word-embedding Representation

One-hot embedding idf

[0.4  0.3  0.45  0  0.3 …. 0.09 0.24 0.7 0.01] 1.2

[0.2  0.1  0.03  0  0.1 …. 0.18 0.91 0.2 0.02] 1.3

[0.1  0.3  0.13  0  0.1 …. 0.16 0.25 0.8 0.03] 2.5

[0.7  0.9  0.01  0  0.6 …. 0.15 0.35 0.4 0.26] 1.3

peace process in the Middle East

One-hot embedding idf

[0.1  0.3  0.03  0  0.4 …. 0.05  0.12 0.02] 4.8

[0.2  0.13  0.03  0  0 ….  0.07 0.09  0.01] 1.2

[0.13  0.3  0.3  0  0.2 …. 0.08 0.87 0.02] 1.4

[0.3  0.4  0.09  0  0.3 …. 0.05 0.34 0.14] 1.6

Bag-of-word-embedding Representation

FV score

[0.4  1.2 1.6  0.2  …. 0.7 1.2 4.8 1.5 ] [2.6 2.5  1.4 …. 0.9 0.72 1.2]

X

Middle East peace processes current status

f1 :  fisher vector
f2 :  fisher vector
g :   dot product

Fisher Kernel

Fisher Vector

Aggregating Continuous Word Embeddings for Information Retrieval,  S. Clinching et. al. 2013 ACL.

g

f1 f2



• The word embeddings are assumed to be generated from the 
Gaussian mixture model(GMM)

• The Fisher Kernel framework:
➢ :The gradient vector describes how different model parameters 

contribute to the process of generating the example.
➢ :The low-rank approximation of the Fisher Information matrix

Composition: The Fisher Kernel Framework

Fisher Vector

Aggregating Continuous Word Embeddings for Information Retrieval,  S. Clinching et. al. 2013 ACL.



• Learning phase:
1. Learn an embedding of words in a low-dimensional space

➢ .
2. Fit a probabilistic model

➢ A mixture model on the word embeddings

• Document representation:
1. Transfer the BoW representation into a BoWE

➢ .
2. Aggregate the continuous word embeddings Ewt using

the FK framework

Composition: The Fisher Kernel Framework

Aggregating Continuous Word Embeddings for Information Retrieval,  S. Clinching et. al. 2013 ACL.



Composition: The Fisher Kernel Framework

• FV performs better than the other latent models on 
document clustering and ad-hoc retrieval.

• There is a significant gap between FV and state-of-the-art 
IR models.

Aggregating Continuous Word Embeddings for Information Retrieval,  S. Clinching et. al. 2013 ACL.



Composition: Dual Embedding Space Model

• Two sets of embeddings are 
trained (WIN and WOUT) 

• But WOUT is generally 
discarded

• IN-OUT dot product captures 
log prob. of co-occurrence

IN

OUT

OUT

IN



Composition: Dual Embedding Space Model

A Dual Embedding Space Model for Document Ranking,  B. Mitra et. al. 2016 WWW.

Bag-of-word-embedding Representation

One-hot embedding idf

[0.4  0.3  0.45  0  0.3 …. 0.09 0.01] 1.2

[0.2  0.1  0.03  0  0.1 …. 0.18 0.02] 1.3

… …

peace process in the Middle East

One-hot embedding idf

[0.1  0.3  0.03  0  0.4 …. 0.05 0.02] 4.8

[0.2  0.13  0.03  0  0 ….  0.07 0.01] 1.2

[0.13  0.3  0.3  0  0.2 …. 0.08 0.02] 1.4

[0.3  0.4  0.09  0  0.3 …. 0.05 0.14] 1.6

Bag-of-word-embedding Representation

[2.6 2.5 5.2 0.5 1.4 3.1 …. 0.9 0.72 1.2]

sum

f2

g

f2 :  average sum
g :   cosine



Composition: Dual Embedding Space Model

• In-In(or Out-Out) cosine similarities are higher for words that 
are typically(by type or by function) similar.

• In-Out cosine similarities are higher for words that co-occur 
often in the train corpus(topically similar). 

ct-2

ct-1

ct+1

ct+2

wt

Avg sum

Input layer Output layer

A Dual Embedding Space Model for Document Ranking,  B. Mitra et. al. 2016 WWW.



Direct Comparison: Comparing short texts

• Weighted semantic network
➢ Related to word alignment

➢ Each word in longer text is connected to its 
most similar

➢ BM25-like edge weighting

• Generates features for supervised 
learning of short text similarity

returns semantic match score from word embedding𝑓𝑠𝑒𝑚(𝑤,𝑤
′)

Kenter and de Rijke. Short text similarity with word embeddings. CIKM 2015

https://staff.fnwi.uva.nl/m.derijke/wp-content/papercite-data/pdf/kenter-short-2015.pdf


Direct Comparison: Comparing short texts

Baseline
methods

Acc. p r F1

Convolutional NNs .699 - - .809

VSM .710 .710 .954 .814

Corpus-based PMI .726 .747 .891 .813

Our method Features Acc. p r F1

OoB Unwghtd .746 .768 .882 .822

OoB Unwghtd+swsn 0.751 .768 .896 .827

OoB+aux w2v Unwghtd+swsn .757 .775 .894 .830

OoB+aux Glv Unwghtd+swsn .758 .771 .907 .833

OoB+both aux Unwghtd+swsn .766 .781 .906 .839

OoB: Out-of-the-box vectors

Aux: Auxiliary vectors

W2v: Word2vec

Glv: Glove

Unwghtd: Unweighted semantic feature

Swsn: Saliency-weighted semantic feature

Kenter and de Rijke. Short text similarity with word embeddings. CIKM 2015

https://staff.fnwi.uva.nl/m.derijke/wp-content/papercite-data/pdf/kenter-short-2015.pdf


Direct Comparison: Word Mover’s Distance

Kusner, Sun, Kolkin and Weinberger. From Word Embeddings To Document Distances. ICML 2015
See also: Huang, Guo, Kusner, Sun, Weinberger and Sha. Supervised Word Mover’s Distance. NIPS 2016

Minimize cost: 

Measure the dissimilarity between two text documents 
as the minimum amount of distance that the embedded 
words of one document need to “travel” to reach the 
embedded words of another document 

http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf
https://papers.nips.cc/paper/6139-supervised-word-movers-distance.pdf


• Reducing Computation Complexity

Direct Comparison: Word Mover’s Distance

Word centroid distance (WCD) Relaxed word moving distance (RWMD)

Kusner, Sun, Kolkin and Weinberger. From Word Embeddings To Document Distances. ICML 2015
See also: Huang, Guo, Kusner, Sun, Weinberger and Sha. Supervised Word Mover’s Distance. NIPS 2016

http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf
https://papers.nips.cc/paper/6139-supervised-word-movers-distance.pdf


WCD <= RWMD <= WMD
WCD: Word centroid distance
RWMD: Relaxed WMD

Prefetch and prune algorithm:
• Sort by WCD
• Compute WMD on top-k
• Continue, using RWMD to 

prune 95% of WMD

Direct Comparison: Word Mover’s Distance

Kusner, Sun, Kolkin and Weinberger. From Word Embeddings To Document Distances. ICML 2015
See also: Huang, Guo, Kusner, Sun, Weinberger and Sha. Supervised Word Mover’s Distance. NIPS 2016

http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf
https://papers.nips.cc/paper/6139-supervised-word-movers-distance.pdf


Direct Comparison: Non-linear Word Transportation

• Matching in IR as a transportation problem
➢ The information gain of transporting (i.e., matching) a document 

word to a query word decides the transportation “profit”;

➢ The total profit over all the query words defines the relevance 
between a document and a query;

Semantic Matching by Non-Linear Word Transportation for Information Retrieval,  J.F. Guo et. al. 2016 CIKM.



• Semantic Matching as Non-Linear Word Transportation
➢ Given a query and a document with BoWE representations, one aims 

to find a set of optimal flows F = {fij} that satisfy

➢ No capacity constraint on query side: unlimited capacity to 
accommodate as much relevant information as possible from the 
document

➢ Non-linear objective function: models diminishing marginal returns on 
the matching profits

෍

𝑗∈𝑄

log෍

𝑖∈𝐷

𝑓𝑖𝑗𝑟𝑖𝑗max

subject to: 𝑓𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝐷, ∀𝑗 ∈ 𝑄

෍

𝑗∈𝑄

𝑓𝑖𝑗 = 𝑐𝑖 ∀𝑖 ∈ 𝐷

Direct Comparison: Non-linear Word Transportation

Semantic Matching by Non-Linear Word Transportation for Information Retrieval,  J.F. Guo et. al. 2016 CIKM.



Direct Comparison: Non-linear Word Transportation

• PIV (vector space model)

• DIR (language modeling approach) 

• BM25 (classic probabilistic model)
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Efficient Solution

…

Doc Query

|V| doc nodes, |Q| query nodes, ~|V|*|Q| edges

Original problem

…

Doc Query

~K*|Q| doc nodes, |Q| query nodes, ~K*|Q|2 edges

Top-K pruning

KNN Pruning

Efficient pruning and indexing strategy

Directly solved by convex optimization approaches



Direct Comparison: Non-linear Word Transportation

• NWT can significantly outperform basic exact matching baselines;

• NWT even performs better than the state-of-the-art n-gram based 
model SDM;

• NWT can significantly outperform existing latent models and word 
embedding based models;

• NWT’s performance is comparable with PRF methods;

Significant improvement or degradation with respect to NWT is indicated (+/-) (p-value<0:05)

Semantic Matching by Non-Linear Word Transportation for Information Retrieval,  J.F. Guo et. al. 2016 CIKM.



Direct Comparison: Adapting PV-DBOW for IR

Ai, Yang, Guo and Croft. Analysis of the Paragraph Vector Model for Information Retrieval. ICTIR 2016

• Improper noise distribution: Negative sampling using IDF instead of 
corpus frequency

• Overfitting on short documents: L2 regularization constraint on the 
norm

• Insufficient modeling for word substitution: Predicting context words

http://dl.acm.org/citation.cfm?id=2970409


Direct Comparison: Adapting PV-DBOW for IR

All the strategies help improve the embedding based language model

Ai, Yang, Guo and Croft. Analysis of the Paragraph Vector Model for Information Retrieval. ICTIR 2016

http://dl.acm.org/citation.cfm?id=2970409


3. Query expansion

• Both passages have the same

number of gold query matches.

• Yet non-query green matches

can be a good evidence of

aboutness.

• We need methods to consider

non-query terms. Traditionally:

automatic query expansion.

Example from Mitra et al., 2016

Query: Albuquerque

https://arxiv.org/abs/1602.01137


Query expansion using w2v

• Identify expansion terms using w2v cosine similarity

• 3 different strategies: pre-retrieval, post-retrieval, and 
pre-retrieval incremental

Roy, Paul, Mitra and Garain. Using Word embeddings for automatic query expansion. Neu-IR Workshop 2016

where Qexp is the set of top K terms from C, the set of candidate expansion 
terms

https://arxiv.org/abs/1606.07608


• Performance

No significant difference between pre- and post- methods
Beats no expansion, but does not beat non-neural expansion

Query expansion using w2v

Roy, Paul, Mitra and Garain. Using Word embeddings for automatic query expansion. Neu-IR Workshop 2016

https://arxiv.org/abs/1606.07608


Query expansion using w2v

1. Embedding-based Query Expansion
• Conditional Independence of query term (multiplicative model)

• Query-Independent Term similarities (mixture model)

• Distance 𝛿 has a sigmoid transform to keep a small similar list

2. Embedding-based Relevance Model

Zamani and Croft. Embedding-based query language models. International Conference on the Theory of Information Retrieval 2016
Lavrenko and Croft. Relevance based language models. SIGIR 2001

http://dl.acm.org/citation.cfm?id=2970405


• performance

Can beat non-neural expansion
Multiplicative better than mixture

Query expansion using w2v

Zamani and Croft. Embedding-based query language models. International Conference on the Theory of Information Retrieval 2016
Lavrenko and Croft. Relevance based language models. SIGIR 2001

http://dl.acm.org/citation.cfm?id=2970405


• Estimating query embedding vectors:
➢ The objective function (optimize towards QL)

➢ Evaluation via Query Expansion

Optimizing the query vector

Zamani and Croft. Estimating embedding vectors for queries. International Conference on the Theory of Information Retrieval 2016

MLE of original query Query embedding
based expansion

http://dl.acm.org/citation.cfm?id=2970403


Optimizing the query vector

• performance

Zamani and Croft. Estimating embedding vectors for queries. International Conference on the Theory of Information Retrieval 2016

Pseudo relevance feedback based estimation + sigmoid 
similarity function work best

http://dl.acm.org/citation.cfm?id=2970403


Global vs. local embedding spaces

• Train w2v on 
documents from first 
round of retrieval

• Fine-grained word 
sense disambiguation

• A large number of 
embedding spaces can 
be cached in practice

Fernando Diaz at al. Query Expansion with Locally-Trained Word Embeddings. ACL 2016



• Retrieval results of query expansion based on
global and local embeddings.

Global vs. local embedding spaces

Local embeddings significantly outperform global
embeddings for query expansion.

Fernando Diaz at al. Query Expansion with Locally-Trained Word Embeddings. ACL 2016



Word Embedding Approaches to IR

Task Related Work

Ad-hoc Retrieval ALMasri et al. (2016), Amer et al. (2016), Clinchant and Perronnin 
(2013), Diaz et al. (2016), GLM (Ganguly et al. (2015)), Mitra et al. 
(2016), Nalisnick et al. (2016), NLTM (Zuccon et al. (2015)), 
Rekabsaz et al. (2016), Roy et al. (2016), Zamani and Croft (2016a), 
Zamani and Croft (2016b), Guo et al. (2016), Zheng and Callan 
(2015)

Bug Localization Ye et al. (2016)

Contextual Suggestion Manotumruksa et al. (2016)

Cross-lingual IR BWESG (Vulic and Moens (2015))

Detecting Text Reuse Zhang et al. (2014)

Domain-specific
Semantic Similarity

De Vine et al. (2014)

Community Question Answering Zhou et al. (2015)

Short Text Similarity Kenter and de Rijke (2015)

Outlier Detection ParagraphVector (Le and Mikolov (2014))

Sponsored Search Grbovic et al. (2015b), (Grbovic et al., 2015a)



Summarization

• Word embeddings can be useful for inexact matching

• Embedding based models often perform poorly when
applied in isolation, and should be combined with exact
matching models (or use telescoping setting).

• These methods seem promising if:
➢ High-quality embeddings/domain-specific embeddings available

➢ No large-scale supervised IR data available

• If large-scale supervised IR data is available … (after the 
break)
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